Endosymbiont Hypothesis and the Ironic Case for a Creator

endosymbionthypothesisandtheironic

BY FAZALE RANA – DECEMBER 12, 2018

i ·ro ·ny

The use of words to express something different from and often opposite to their literal meaning.
Incongruity between what might be expected and what actually occurs.

—The Free Dictionary

People often use irony in humor, rhetoric, and literature, but few would think it has a place in science. But wryly, this has become the case. Recent work in synthetic biology has created a real sense of irony among the scientific community—particularly for those who view life’s origin and design from an evolutionary framework.

Increasingly, life scientists are turning to synthetic biology to help them understand how life could have originated and evolved. But, they have achieved the opposite of what they intended. Instead of developing insights into key evolutionary transitions in life’s history, they have, ironically, demonstrated the central role intelligent agency must play in any scientific explanation for the origin, design, and history of life.

This paradoxical situation is nicely illustrated by recent work undertaken by researchers from Scripps Research (La Jolla, CA). Through genetic engineering, the scientific investigators created a non-natural version of the bacterium E. coli. This microbe is designed to take up permanent residence in yeast cells. (Cells that take up permanent residence within other cells are referred to as endosymbionts.) They hope that by studying these genetically engineered endosymbionts, they can gain a better understanding of how the first eukaryotic cells evolved. Along the way, they hope to find added support for the endosymbiont hypothesis.1

The Endosymbiont Hypothesis

Most biologists believe that the endosymbiont hypothesis (symbiogenesis) best explains one of the key transitions in life’s history; namely, the origin of complex cells from bacteria and archaea. Building on the ideas of Russian botanist Konstantin Mereschkowski, Lynn Margulis(1938–2011) advanced the endosymbiont hypothesis in the 1960s to explain the origin of eukaryotic cells.

Margulis’s work has become an integral part of the evolutionary paradigm. Many life scientists find the evidence for this idea compelling and consequently view it as providing broad support for an evolutionary explanation for the history and design of life.

According to this hypothesis, complex cells originated when symbiotic relationships formed among single-celled microbes after free-living bacterial and/or archaeal cells were engulfed by a “host” microbe. Presumably, organelles such as mitochondria were once endosymbionts. Evolutionary biologists believe that once engulfed by the host cell, the endosymbionts took up permanent residency, with the endosymbiont growing and dividing inside the host.

Over time, the endosymbionts and the host became mutually interdependent. Endosymbionts provided a metabolic benefit for the host cell—such as an added source of ATP—while the host cell provided nutrients to the endosymbionts. Presumably, the endosymbionts gradually evolved into organelles through a process referred to as genome reduction. This reduction resulted when genes from the endosymbionts’ genomes were transferred into the genome of the host organism.

endosymbiont-hypothesis-and-the-ironic-case-for-a-creator-1

Figure 1: Endosymbiont hypothesis. Image credit: Wikipedia.

Life scientists point to a number of similarities between mitochondria and alphaproteobacteria as evidence for the endosymbiont hypothesis. (For a description of the evidence, see the articles listed in the Resources section.) Nevertheless, they don’t understand how symbiogenesis actually occurred. To gain this insight, scientists from Scripps Research sought to experimentally replicate the earliest stages of mitochondrial evolution by engineering E. coli and brewer’s yeast (S. cerevisiae) to yield an endosymbiotic relationship.

Engineering Endosymbiosis

First, the research team generated a strain of E. coli that no longer has the capacity to produce the essential cofactor thiamin. They achieved this by disabling one of the genes involved in the biosynthesis of the compound. Without this metabolic capacity, this strain becomes dependent on an exogenous source of thiamin in order to survive. (Because the E. coli genome encodes for a transporter protein that can pump thiamin into the cell from the exterior environment, it can grow if an external supply of thiamin is available.) When incorporated into yeast cells, the thiamin in the yeast cytoplasm becomes the source of the exogenous thiamin, rendering E. coli dependent on the yeast cell’s metabolic processes.

Next, they transferred the gene that encodes a protein called ADP/ATP translocase into the E. coli strain. This gene was harbored on a plasmid (which is a small circular piece of DNA). Normally, the gene is found in the genome of an endosymbiotic bacterium that infects amoeba. This protein pumps ATP from the interior of the bacterial cell to the exterior environment.2

The team then exposed yeast cells (that were deficient in ATP production) to polyethylene glycol, which creates a passageway for E. coli cells to make their way into the yeast cells. In doing so, E. coli becomes established as endosymbionts within the yeast cells’ interior, with the E. coli providing ATP to the yeast cell and the yeast cell providing thiamin to the bacterial cell.

Researchers discovered that once taken up by the yeast cells, the E. coli did not persist inside the cell’s interior. They reasoned that the bacterial cells were being destroyed by the lysosomal degradation pathway. To prevent their destruction, the research team had to introduce three additional genes into the E. coli from three separate endosymbiotic bacteria. Each of these genes encodes proteins—called SNARE-like proteins—that interfere with the lysosomal destruction pathway.

Finally, to establish a mutualistic relationship between the genetically-engineered strain of E. coli and the yeast cell, the researchers used a yeast strain with defective mitochondria. This defect prevented the yeast cells from producing an adequate supply of ATP. Because of this limitation, the yeast cells grow slowly and would benefit from the E. coli endosymbionts, with the engineered capacity to transport ATP from their cellular interior to the exterior environment (the yeast cytoplasm.)

The researchers observed that the yeast cells with E. coli endosymbionts appeared to be stable for 40 rounds of cell doublings. To demonstrate the potential utility of this system to study symbiogenesis, the research team then began the process of genome reduction for the E. coli endosymbionts. They successively eliminated the capacity of the bacterial endosymbiont to make the key metabolic intermediate NAD and the amino acid serine. These triply-deficient E. coli strains survived in the yeast cells by taking up these nutrients from the yeast cytoplasm.

Evolution or Intentional Design?

The Scripps Research scientific team’s work is impressive, exemplifying science at its very best. They hope that their landmark accomplishment will lead to a better understanding of how eukaryotic cells appeared on Earth by providing the research community with a model system that allows them to probe the process of symbiogenesis. It will also allow them to test the various facets of the endosymbiont hypothesis.

In fact, I would argue that this study already has made important strides in explaining the genesis of eukaryotic cells. But ironically, instead of proffering support for an evolutionary origin of eukaryotic cells (even though the investigators operated within the confines of the evolutionary paradigm), their work points to the necessary role intelligent agency must have played in one of the most important events in life’s history.

This research was executed by some of the best minds in the world, who relied on a detailed and comprehensive understanding of biochemical and cellular systems. Such knowledge took a couple of centuries to accumulate. Furthermore, establishing mutualistic interactions between the two organisms required a significant amount of ingenuity—genius that is reflected in the experimental strategy and design of their study. And even at that point, execution of their experimental protocols necessitated the use of sophisticated laboratory techniques carried out under highly controlled, carefully orchestrated conditions. To sum it up: intelligent agency was required to establish the endosymbiotic relationship between the two microbes.

endosymbiont-hypothesis-and-the-ironic-case-for-a-creator-2

Figure 2: Lab researcher. Image credit: Shutterstock.

Or, to put it differently, the endosymbiotic relationship between these two organisms was intelligently designed. (All this work was necessary to recapitulate only the presumed first step in the process of symbiogenesis.) This conclusion gains added support given some of the significant problems confronting the endosymbiotic hypothesis. (For more details, see the Resources section.) By analogy, it seems reasonable to conclude that eukaryotic cells, too, must reflect the handiwork of a Divine Mind—a Creator.

Resources

Endnotes

  1. Angad P. Mehta et al., “Engineering Yeast Endosymbionts as a Step toward the Evolution of Mitochondria,” Proceedings of the National Academy of Sciences, USA 115 (November 13, 2018): doi:10.1073/pnas.1813143115.
  2. ATP is a biochemical that stores energy used to power the cell’s operation. Produced by mitochondria, ATP is one of the end products of energy harvesting pathways in the cell. The ATP produced in mitochondria is pumped into the cell’s cytoplasm from within the interior of this organelle by an ADP/ATP transporter.
Reprinted with permission by the author
Original article at:
https://www.reasons.org/explore/blogs/the-cells-design/read/the-cells-design/2018/12/12/endosymbiont-hypothesis-and-the-ironic-case-for-a-creator

Yeast Gene Editing Study Raises Questions about the Evolutionary Origin of Human Chromosome 2

yeastgeneediting

BY FAZALE RANA – SEPTEMBER 12, 2018

As a biochemist and a skeptic of the evolutionary paradigm, people often ask me two interrelated questions:

  1. What do you think are the greatest scientific challenges to the evolutionary paradigm?
  2. How do you respond to all the compelling evidence for biological evolution?

When it comes to the second question, people almost always ask about the genetic similarity between humans and chimpanzees. Unexpectedly, new research on gene editing in brewer’s yeast helps answer these questions more definitively than ever.

For many people, the genetic comparisons between the two species convince them that human evolution is true. Presumably, the shared genetic features in the human and chimpanzee genomes reflect the species’ shared evolutionary ancestry.

One high-profile example of these similarities is the structural features human chromosome 2 shares with two chimpanzee chromosomes labeled chromosome 2A and chromosome 2B. When the two chimpanzee chromosomes are placed end to end, they look remarkably like human chromosome 2. Evolutionary biologists interpret this genetic similarity as evidence that human chromosome 2 arose when chromosome 2A and chromosome 2B underwent an end-to-end fusion. They claim that this fusion took place in the human evolutionary lineage at some point after it separated from the lineage that led to chimpanzees and bonobos. Therefore, the similarity in these chromosomes provides strong evidence that humans and chimpanzees share an evolutionary ancestry.

yeast-gene-editing-study-1

Figure 1: Human and Chimpanzee Chromosomes Compared

Image credit: Who Was Adam? (Covina, CA: RTB Press, 2015), p. 210.

Yet, new work by two separate teams of synthetic biologists from the United States and China, respectively, raises questions about this evolutionary scenario. Working independently, both research teams devised similar gene editing techniques that, in turn, they used to fuse the chromosomes in the yeast species, Saccharomyces cerevisiae (brewer’s yeast).Their work demonstrates the central role intelligent agency must play in end-on-end chromosome fusion, thereby countering the evolutionary explanation while supporting a creation model interpretation of human chromosome 2.

The Structure of Human Chromosome 2

Chromosomes are large structures visible in the nucleus during the cell division process. These structures consist of DNA combined with proteins to form the chromosome’s highly condensed, hierarchical architecture.

yeast-gene-editing-study-2Figure 2: Chromosome Structure

Image credit: Shutterstock

Each species has a characteristic number of chromosomes that differ in size and shape. For example, humans have 46 chromosomes (23 pairs); chimpanzees and other apes have 48 (24 pairs).

When exposed to certain dyes, chromosomes stain. This staining process produces a pattern of bands along the length of the chromosome that is diagnostic. The bands vary in number, location, thickness, and intensity. And the unique banding profile of each chromosome helps geneticists identify them under a microscope.

In the early 1980s, evolutionary biologists compared the chromosomes of humans, chimpanzees, gorillas, and orangutans for the first time.2 These studies revealed an exceptional degree of similarity between human and chimp chromosomes. When aligned, the human and corresponding chimpanzee chromosomes display near-identical banding patterns, band locations, band size, and band stain intensity. To evolutionary biologists, this resemblance reveals powerful evidence for human and chimpanzee shared ancestry.

The most noticeable difference between human and chimp chromosomes is the quantity: 46 for humans and 48 for chimpanzees. As I pointed out, evolutionary biologists account for this difference by suggesting that two chimp chromosomes (2A and 2B) fused. This fusion event would have reduced the number of chromosome pairs from 24 to 23, and the chromosome number from 48 to 46.

As noted, evidence for this fusion comes from the close similarity of the banding patterns for human chromosome 2 and chimp chromosomes 2A and 2B when the two are oriented end on end. The case for fusion also gains support by the presence of: (1) two centromeres in human chromosome 2, one functional, the other inactive; and (2) an internal telomeresequence within human chromosome 2.3 The location of the two centromeres and internal telomere sequences corresponds to the expected locations if, indeed, human chromosome 2 arose as a fusion event.4

Evidence for Evolution or Creation?

Even though human chromosome 2 looks like it is a fusion product, it seems unlikely to me that its genesis resulted from undirected natural processes. Instead, I would argue that a Creator intervened to create human chromosome 2 because combining chromosomes 2A and 2B end to end to form it would have required a succession of highly improbable events.

I describe the challenges to the evolutionary explanation in some detail in a previous article:

  • End-to-end fusion of two chromosomes at the telomeres faces nearly insurmountable hurdles.
  • And, if somehow the fusion did occur, it would alter the number of chromosomes and lead to one of three possible scenarios: (1) nonviable offspring, (2) viable offspring that suffers from a diseased state, or (3) viable but infertile offspring. Each of these scenarios would prevent the fused chromosome from entering and becoming entrenched in the human gene pool.
  • Finally, if chromosome fusion took place and if the fused chromosome could be passed on to offspring, the event would have had to create such a large evolutionary advantage that it would rapidly sweep through the population, becoming fixed.

This succession of highly unlikely events makes more sense, from my vantage point, if we view the structure of human chromosome 2 as the handiwork of a Creator instead of the outworking of evolutionary processes. But why would these chromosomes appear to be so similar, if they were created? As I discuss elsewhere, I think the similarity between human and chimpanzee chromosomes reflects shared design, not shared evolutionary ancestry. (For more details, see my article “Chromosome 2: The Best Evidence for Evolution?”)

Yeast Chromosome Studies Offer Insight

Recent work by two independent teams of synthetic biologists from the US and China corroborates my critique of the evolutionary explanation for human chromosome 2. Working within the context of the evolutionary framework, both teams were interested in understanding the influence that chromosome number and organization have on an organism’s biology and how chromosome fusion shapes evolutionary history. To pursue this insight, both research groups carried out similar experiments using CRISPR/Cas9 gene editing to reduce the number of chromosomes in brewer’s yeast from 16 to 1 (for the Chinese team) and from 16 to 2 (for the team from the US) through a succession of fusion events.

Both teams reduced the number of chromosomes in stages by fusing pairs of chromosomes. The first attempt reduced the number from 16 to 8. In the next round they fused pairs of the newly created chromosome to reduce the number from 8 to 4, and so on.

To their surprise, the yeast seemed to tolerate this radical genome editing quite well—although their growth rate slowed and the yeast failed to thrive under certain laboratory conditions. Gene expression was altered in the modified yeast genomes, but only for a few genes. Most of the 5,800 genes in the brewer’s yeast genome were normally expressed, compared to the wild-type strain.

For synthetic biology, this work is a milestone. It currently stands as one of the most radical genome reconfigurations ever achieved. This discovery creates an exciting new research tool to address fundamental questions about chromosome biology. It also may have important applications in biotechnology.

The experiment also ranks as a milestone for the RTB human origins creation model because it helps address questions about the origin of human chromosome 2. Specifically, the work with brewer’s yeast provides empirical evidence that human chromosome 2 must have been shaped by an Intelligent Agent. This research also reinforces my concerns about the capacity of evolutionary mechanisms to generate human chromosome 2 via the fusion of chimpanzee chromosomes 2A and 2B.

Chromosome fusion demonstrates the critical role intelligent agency plays.

Both research teams had to carefully design the gene editing system they used so that it would precisely delete two distinct regions in the chromosomes. This process affected end-on-end chromosome fusions in a way that would allow the yeast cells to survive. Specifically, they had to delete regions of the chromosomes near the telomeres, including the highly repetitive telomere-associated sequences. While they carried out this deletion, they carefully avoided deleting DNA sequences near the telomeres that harbored genes. They also simultaneously deleted one of the centromeres of the fused chromosomes to ensure that the fused chromosome would properly replicate and segregate during cell division. Finally, they had to make sure that when the two chromosomes fused, the remaining centromere was positioned near the center of the resulting chromosome.

In addition to the high-precision gene editing, they had to carefully construct the sequence of donor DNA that accompanied the CRISPR/Cas9 gene editing package so that the chromosomes with the deleted telomeres could be directed to fuse end on end. Without the donor DNA, the fusion would have been haphazard.

In other words, to fuse the chromosomes so that the yeast survived, the research teams needed a detailed understanding of chromosome structure and biology and a strategy to use this knowledge to design precise gene editing protocols. Such planning would ensure that chromosome fusion occurred without the loss of key genetic information and without disrupting key processes such as DNA replication and chromosome segregation during cell division. The researchers’ painstaking effort is a far cry from the unguided, undirected, haphazard events that evolutionary biologists think caused the end-on-end chromosome fusion that created human chromosome 2. In fact, given the high-precision gene editing required to create fused chromosomes, it is hard to envision how evolutionary processes could ever produce a functional fused chromosome.

A discovery by both research teams further complicates the evolutionary explanation for the origin of human chromosome 2. Namely, the yeast cells could not replicate unless the centromere of one of the chromosomes was deleted at the time the chromosomes fused. The researchers learned that if this step was omitted, the fused chromosomes weren’t stable. Because centromeres serve as the point of attachment for the mitotic spindle, if a chromosome possesses two centromeres, mistakes occur in the chromosome segregation step during cell division.

It is interesting that human chromosome 2 has two centromeres but one of them has been inactivated. (In the evolutionary scenario, this inactivation would have happened through a series of mutations in the centromeric DNA sequences that accrued over time.) However, if human chromosome 2 resulted from the fusion of two chimpanzee chromosomes, the initial fusion product would have possessed two centromeres, both functional. In the evolutionary scenario, it would have taken millennia for one of the chromosomes to become inactivated. Yet, the yeast studies indicate that centromere loss must take place simultaneously with end-to-end fusion. However, based on the nature of evolutionary mechanisms, it cannot.

Chromosome fusion in yeast leads to a loss of fitness.

Perhaps one of the most remarkable outcomes of this work is the discovery that the yeast cells lived after undergoing that many successive chromosome fusions. In fact, experts in synthetic biology such as Gianni Liti (who commented on this work for Nature), expressed surprise that the yeast survived this radical genome restructuring.5

Though both research teams claimed that the fusion had little effect on the fitness of the yeast, the data suggests otherwise. The yeast cells with the fused chromosomes grew more slowly than wild-type cells and struggled to grow under certain culture conditions. In fact, when the Chinese research team cultured the yeast with the single fused chromosome with the wild-type strain, the wild-type yeast cells out-competed the cells with the fused chromosome.

Although researchers observed changes in gene expression only for a small number of genes, this result appears to be a bit misleading. The genes with changed expression patterns are normally located near telomeres. The activity of these genes is normally turned down low because they usually are needed only under specific growth conditions. But with the removal of telomeres in the fused chromosomes, these genes are no longer properly regulated; in fact, they may be over-expressed. And, as a consequence of chromosome fusion, some genes that normally reside at a distance from telomeres find themselves close to telomeres, leading to reduced activity.

This altered gene expression pattern helps explains the slower growth rate of the yeast strain with fused chromosomes and the yeast cells’ difficulty to grow under certain conditions. The finding also raises more questions about the evolutionary scenario for the origin of human chromosome 2. Based on the yeast studies, it seems reasonable to think that the end-to-end fusion of chromosomes 2A and 2B would have reduced the fitness of the offspring that first inherited the fused chromosome 2, making it less likely that the fusion would have taken hold in the human gene pool.

Chromosome fusion in yeast leads to a loss of fertility.

Normally, yeast cells reproduce asexually. But they can also reproduce sexually. When yeast cells mate, they fuse. As a result of this fusion event, the resulting cell has two sets of chromosomes. In this state, the yeast cells can divide or form spores. In many respects, the sexual reproduction of yeast cels resembles the sexual reproduction in humans, in which egg and sperm cells, each with one set of chromosomes, fuse to form a zygote with two sets of chromosomes.

yeast-gene-editing-study-3

Figure 3: Yeast Cell Reproduction

Image credit: Shutterstock

Both research groups discovered that genetically engineered yeast cells with fused chromosomes could mate and form spores, but spore viability was lower than for wild-type yeast.

They also discovered that after the first round of chromosome fusion when the genetically engineered yeast possessed 8 chromosomes, mating normal yeast cells with those harboring fused chromosomes resulted in low fertility. When wild-type yeast cells were mated with yeast strains that had been subjected to additional rounds of chromosome fusion, spore formation failed altogether.

The synthetic biologists find this result encouraging because it means that if they use yeast with fused chromosomes for biotechnology applications, there is little chance that the genetically engineered yeast will mate with wild-type yeast. In other words, the loss of fertility serves as a safeguard.

However, this loss of fertility does not bode well for evolutionary explanations for the origin of human chromosome 2. The yeast studies indicate that chromosome fusion leads to a loss of fertility because of the mismatch in chromosome number, which makes it difficult for chromosomes to align and properly segregate during cell division. So, why wouldn’t this loss of fertility happen if chromosomes 2A and 2B fuse?

yeast-gene-editing-study-4

Figure 4: Cell Division

Image credit: Shutterstock

In short, the theoretical concerns I expressed about the evolutionary origin of human chromosome 2 find experimental support in the yeast studies. And the indisputable role intelligent agency plays in designing and executing the protocols to fuse yeast chromosomes provides empirical evidence that a Creator must have intervened in some capacity to design human chromosome 2.

Of course, there are a number of outstanding questions that remain for a creation model interpretation of human chromosome 2, including:

  • Why would a Creator seemingly fuse together two chromosomes to create human chromosome 2?
  • Why does this chromosome possess internal telomere sequences?
  • Why does human chromosome 2 harbor seemingly nonfunctional centromere sequences?

We predict that as we learn more about the biology of human chromosome 2, we will discover a compelling rationale for the structural features of this chromosome, in a way that befits a Creator.

But, at this juncture the fusion of yeast chromosomes in the lab makes it hard to think that unguided evolutionary processes could ever successfully fuse two chromosomes, including human chromosome 2, end on end. Creation appears to make more sense.

Resources

Endnotes

  1. Jingchuan Luo et al., “Karyotype Engineering by Chromosome Fusion Leads to Reproductive Isolation in Yeast,” Nature 560 (2018): 392–96, doi:10.1038/s41586-018-0374-x; Yangyang Shao et al., “Creating a Functional Single-Chromosome Yeast,” Nature 560 (2018): 331–35, doi:10.1038/s41586-018-0382-x.
  2. Jorge J. Yunis, J. R. Sawyer, and K. Dunham, “The Striking Resemblance of High-Resolution G-Banded Chromosomes of Man and Chimpanzee,” Science 208 (1980): 1145–48, doi:10.1126/science.7375922; Jorge J. Yunis and Om Prakash, “The Origin of Man: A Chromosomal Pictorial Legacy,” Science 215 (1982): 1525–30, doi:10.1126/science.7063861.
  3. The centromere is a region of the DNA molecule near the center of the chromosome that serves as the point of attachment for the mitotic spindle during the cell division process. Telomeres are DNA sequences located at the tip ends of chromosomes designed to stabilize the chromosome and prevent it from undergoing degradation.
  4. J. W. Ijdo et al., “Origin of Human Chromosome 2: An Ancestral Telomere-Telomere Fusion,” Proceedings of the National Academy of Sciences USA 88 (1991): 9051–55, doi:10.1073/pnas.88.20.9051; Rosamaria Avarello et al., “Evidence for an Ancestral Alphoid Domain on the Long Arm of Human Chromosome 2,” Human Genetics 89 (1992): 247–49, doi:10.1007/BF00217134.
  5. Gianni Liti, “Yeast Chromosome Numbers Minimized Using Genome Editing,” Nature 560 (August 1, 2018): 317–18, doi:10.1038/d41586-018-05309-4.
Reprinted with permission by the author
Original article at:
https://www.reasons.org/explore/blogs/the-cells-design/read/the-cells-design/2018/09/12/yeast-gene-editing-study-raises-questions-about-the-evolutionary-origin-of-human-chromosome-2

 

Does Development of Artificial Intelligence Undermine Human Exceptionalism?

doesdevelopmentofartificial

BY FAZALE RANA – JANUARY 17, 2018
In each case catalytic technologies, such as artificial wombs, the repair of brain injuries with prostheses and the enhancement of animal intelligence, will force us to choose between pre-modern human-racism and the cyborg citizenship implicit in the liberal democratic tradition.
—James Hughes, Citizen Cyborg

On one hand, it appeared to be nothing more than a harmless publicity stunt. On October 25, 2017, Saudi Arabia granted Sophia—a lifelike robot, powered by artificial intelligence software—citizenship. This took place at the FII conference, held in Riyahd, providing a prime opportunity for Hanson Robotics to showcase its most advanced robotics system to date. And, it also served as a chance for Saudi Arabia to establish itself as a world leader in AI technology.

But, on the other hand, granting Sophia citizenship establishes a dangerous precedent, acting as a harbinger to a dystopian future where machines (and animals with enhanced intelligence) are afforded the same rights as human beings. Elevating machines to the same status as human beings threatens to undermine human dignity and worth and, along with it, the biblical conception of humanity.

Still, the notion of granting citizenship to robots makes sense within a materialistic/naturalistic worldview. In this intellectual framework, human beings are largely regarded as biological machines and the human brain as an organic computer. If AI systems can be created with self-awareness and emotional capacity, what makes them any different from human beings? Is a silicon-based computer any different from one made up of organic matter?

For many people, sentience or self-awareness is the key determinant of personhood. And persons are guaranteed rights, whether they are human beings, AI machines, or super-intelligent animals created by genetic engineering or implanting human brain organoids (grown in a lab) into the brains of animals.

In other words, the way we regard AI technology has wide-ranging consequences for how we view and value human life. And while views of AI rooted in a materialistic/naturalistic worldview potentially threaten human dignity, a Christian worldview perspective of AI actually highlights human exceptionalism—in a way that aligns with the biblical concept of the image of God.

Will AI Systems Ever Be Self-Aware?

The linchpin for granting AI citizenship—and the same rights as human beings—is self-awareness.

But are AI systems self-aware? And will they ever be?

From my perspective, the answers to both questions are “no.” To be certain, AI systems are on a steep trajectory toward ever-increasing sophistication. But there is little prospect that they will ever truly be sentient. AI systems are becoming better and better at mimicking human cognitive abilities, emotions, and even self-awareness. But these systems do not inherently possess these capabilities—and I don’t think they ever will.

Researchers are able to create AI systems with the capacity to mimic human qualities through the combination of natural-language processing and machine-learning algorithms. In effect, natural-language processing is pattern matching, in which the AI system employs prewritten scripts that are combined, spliced, and recombined to make the AI systems’ comments and responses to questions seem natural. For example, Sophia performs really well responding to scripted questions. But, when questions posed to her are off-script, she often provides nonsensical answers or responds with non-sequiturs. These failings reflect limitations of the natural-language processing algorithms. Undoubtedly, Sophia’s responses will improve thanks to machine-learning protocols. These algorithms incorporate new information into the software inputs to generate improved outcomes. In fact, through machine-learning algorithms, Sophia is “learning” how to emote, by controlling mechanical hardware to produce appropriate facial expressions in response to the comments made by “her” conversation partner. But, these improvements will just be a little bit more of the same—differing in degree, not kind. They will never propel Sophia, or any AI system, to genuine self-awareness.

As the algorithms and hardware improve, Sophia (and other AI systems) are going to become better at mimicking human beings and, in doing so, seem to be more and more like us. But, even now, it is tempting to view Sophia as humanlike. But this tendency has little to do with AI technology. Instead, it has to do with our tendency to anthropomorphize animals and even inanimate objects. Often, we attribute human qualities to nonhuman, nonliving entities. And, undoubtedly, we will do the same for AI systems such as Sophia.

Our tendency to anthropomorphize arises from our theory-of-mind capacity—unique to human beings. As human beings, we recognize that other people have minds just like ours. As a consequence of this capacity, we anticipate what others are thinking and feeling. But we can’t turn off our theory-of-mind abilities. And as a consequence, we attribute human qualities to animals and machines. To put it another way, AI systems seem to be self-aware, because we have an innate tendency to view them as such, even if they are not.

Ironically, a quality unique to human beings—one that contributes to human exceptionalism and can be understood as a manifestation of the image of God—makes us susceptible to seeing AI systems as sentient “beings.” And because of this tendency, and because of our empathy (which relates to our theory of mind capacity), we want to grant AI systems the same rights afforded to us. But when we think carefully about our tendency to anthropomorphize, it should become evident that our proclivity to regard AI systems as humanlike stems from the fact that we are made in God’s image.

AI Systems and the Case for Human Exceptionalism

There is another way that research in AI systems evinces human exceptionalism. It is provocative to think that human beings are the only species that has ever existed that has the capability to create machines that are like us—at least, in some sense. Clearly, this achievement is beyond the capabilities of the great apes, and no evidence exists to think that Neanderthals could have ever pulled off a feat such as creating AI systems. Neanderthals—who first appear in the fossil record around 250,000 to 200,000 years ago and disappear around 40,000 years ago—existed on Earth longer than modern humans have. Yet, our technology has progressed exponentially, while Neanderthal technology remained largely static.

Our ability to create AI systems stems from the capacity for symbolism. As human beings, we effortlessly represent the world with discrete symbols. We denote abstract concepts with symbols. And our ability to represent the world symbolically has interesting consequences when coupled with our abilities to combine and recombine those symbols in a nearly infinite number of ways to create alternate possibilities.

Our capacity for symbolism manifests in the form of language, art, music, and even body ornamentation. And we desire to communicate the scenarios we construct in our minds with other human beings. In a sense, symbolism and our open-ended capacity to generate alternative hypotheses are scientific descriptors of the image of God. No other creature, including the great apes or Neanderthals, possesses these two qualities. In short, we can create AI systems because we uniquely bear God’s image.

AI Systems and the Case for Creation

Our ability to create AI systems also provides evidence that we are the product of a Creator’s handiwork. The creation of AI systems requires the work of highly trained scientists and engineers who rely on several hundred years of scientific and technological advances. Creating AI systems requires designing and building highly advanced computer systems, engineering complex robotics systems, and writing sophisticated computer code. In other words, AI systems are intelligently designed. Or to put it another way, work in AI provides empirical evidence that a mind is required to create a mind—or, at least, a facsimile of a mind. And this conclusion means that the human mind must come from a Mind, as well. In light of this conclusion, is it reasonable to think that the human mind arose through unguided, undirected, historically contingent processes?

Developments in AI will undoubtedly lead to important advances that will improve the quality of our lives. And while it is tempting to see AI systems in human terms, these devices are machines—and nothing more. No justification exists for AI systems to be granted the same rights as human beings. In fact, when we think carefully about the nature and origin of AI, these systems highlight our exceptional nature as human beings, evincing the biblical view of humanity.

Only human beings deserve the rights of citizenship because these rights—justifiably called inalienable—are due us because we bear God’s image.

Resources

Reprinted with permission by the author
Original article at:
https://www.reasons.org/explore/blogs/the-cells-design/read/the-cells-design/2018/01/17/does-development-of-artificial-intelligence-undermine-human-exceptionalism