Why Would God Create a World with Parasites?

Untitled 20
BY FAZALE RANA – JUNE 5, 2019

A being so powerful and so full of knowledge as a God who could create the universe, is to our finite minds omnipotent and omniscient, and it revolts our understanding to suppose that his benevolence is not unbounded, for what advantage can there be in the sufferings of millions of lower animals throughout almost endless time? This very old argument from the existence of suffering against the existence of an intelligent first cause seems to me a strong one; whereas, as just remarked, the presence of much suffering agrees well with the view that all organic beings have been developed through variation and natural selection.1

—Charles Darwin, The Autobiography of Charles Darwin

If God exists and if he is all-powerful, all-knowing, and all-good, why is there so much pain and suffering in the world? This conundrum keeps many skeptics and seekers from the Christian faith and even troubles some Christians.

Perhaps nothing epitomizes the problem of pain and suffering more than the cruelty observed in nature. Indeed, what advantage can there be in the suffering of millions of animals?

Often, the pain and suffering animals experience is accompanied by unimaginable and seemingly unnecessary cruelty.

Take nematodes (roundworms) as an example. There are over 10,000 species of nematodes. Some are free-living. Others are parasitic. Nematode parasites infect humans, animals, plants, and insects, causing untold pain and suffering. But their typical life cycle in insects seems especially cruel.

Nematodes that parasitize insects usually are free-living in their adult form but infest their host in the juvenile stage. The infection begins when the juvenile form of the parasite enters into the insect host, usually through a body opening, such as the mouth or anus. Sometimes the juveniles drill through the insect’s cuticle.

Once inside the host, the juveniles release bacteria that infect and kill the host, liquefying its internal tissues. As long as the supply of host tissue holds out, the juveniles will live within the insect’s body, even reproducing. When the food supply runs out, the nematodes exit the insect and seek out another host.

blog__inline--why-would-god-create-a-world-with-parasites

Figure 1: An Entomopathogenic Nematode Juvenile. Image credit: Shutterstock

Why would God create a world with parasitism? Could God really be responsible for a world like the one we inhabit? Many skeptics would answer “no” and conclude that God must not exist.

A Christian Response to the Problem of Evil

One way to defend God’s existence and goodness in the face of animal pain and suffering is to posit that there just might be good reasons for God to create the world the way it is. Perhaps what we are quick to label as evil may actually serve a necessary function.

This perspective gains support based on some recent insights into the benefits that insect parasites impart to ecosystems. A research team from the University of Georgia (UGA) recently unearthed one example of the important role played by these parasites.2 These researchers demonstrated that nematode-infected horned passalus beetles (bess beetles) are more effective at breaking down dead logs in the forest than their parasite-free counterparts—and this difference benefits the ecosystem. Here’s how.

The Benefit Parasites Provide to the Ecosystem

The horned passalus lives in decaying logs. The beetles consume wood through a multistep process. After ingesting the wood, these insects excrete it in a partially digested form. The wood excrement becomes colonized by bacteria and fungi and then is later re-consumed by the beetle.

These insects can become infected by a nematode parasite (Chondronema passali). The parasite inhabits the abdominal cavity of the beetle (though not its gastrointestinal tract). When infected, the horned passalus can harbor thousands of individual nematodes.

To study the effect of this parasite on the horned passalus and the forest ecosystem inhabited by the insect, researchers collected 113 individuals from the woods near the UGA campus. They also collected pieces of wood from the logs bearing the beetles.

In the laboratory, they placed each of the beetles in separate containers that also contained pieces of wood. After three months, they discovered that the beetles infected with the nematode parasite processed 15 percent more wood than beetles that were parasite-free. Apparently, the beetles compensate for the nematode infection by consuming more food. One possible reason for the increased wood consumption may be due to the fact that the parasites draw away essential nutrients from the beetle host, requiring the insect to consume more food.

While it isn’t clear if the parasite infestation harms the beetle (infected beetles have reduced mobility and loss of motor function), it is clear that the infestation benefits the ecosystem. These beetles play a key role in breaking down dead logs and returning nutrients to the forest soil. By increasing the beetles’ wood consumption, the nematodes accelerate this process, benefiting the ecosystem’s overall health.

Cody Prouty, one of the project’s researchers, points out “that although the beetle and the nematode have a parasitic relationship, the ecosystem benefits from not only the beetle performing its function, but the parasite increasing the efficiency of the beetle. Over the course of a few years, the parasitized beetles could process many more logs than unparasitized beetles, and lead to an increase of organic matter in soils.”3

This study is not the first to discover benefits parasites impart to ecosystems. Parasites play a role in shaping ecosystem biodiversity and they intertwine with the food web. The researchers close their article this way: “Countering long-standing unpopular views of parasites is certainly challenging, but perhaps evidence like that presented here will be of use in this effort.”4

Such evidence does not “revolt our understanding,” as Darwin might suggest, but instead enhances our insights into the creation and helps counter the challenge of the problem of evil. Even creatures as gruesome as parasites can serve a beneficial purpose in creation and maybe could rightfully be understood as good.

Resources

Endnotes
  1. Charles Darwin, The Autobiography of Charles Darwin: 1809–1882 (New York: W. W. Norton, 1969), 90.
  2. Andrew K. Davis and Cody Prouty, “The Sicker the Better: Nematode-Infected Passalus Beetles Provide Enhanced Ecosystem Services,” Biology Letters 15, no. 5 (2019): 20180842, doi:10.1098/rsbl.2018.0842.
  3. University of Georgia, “Parasites Help Beetle Hosts Function More Effectively,” ScienceDaily (May 1, 2019), https://www.sciencedaily.com/releases/2019/05/190501131435.htm.
  4. Davis and Prouty,“The Sicker the Better,” 3.

Reprinted with permission by the author
Original article at:
https://www.reasons.org/explore/blogs/the-cells-design/read/the-cells-design/2019/06/05/why-would-god-create-a-world-with-parasites

Why Would God Create a World Where Animals Eat Their Offspring?

Untitled 18
BY FAZALE RANA – MAY 22, 2019

What a book a Devil’s chaplain might write on the clumsy, wasteful, blundering, low and horridly cruel works of nature!

–Charles Darwin, “Letter to J. D. Hooker,” Darwin Correspondence Project

You may not have ever heard of him, but he played an important role in ushering in the Darwinian revolution in biology. His name was Asa Gray.

Gray (1810–1888) was a botanist at Harvard University. He was among the first scientists in the US to adopt Darwin’s theory of evolution. Asa Gray was also a devout Christian.

blog__inline--why-would-god-create-a-world-where-animals-eat-their-offspring-1

Asa Gray in 1864. Image credit: John Adams Whipple, Wikipedia

Gray was convinced that Darwin’s theory of evolution was sound. He was also convinced that nature displayed unmistakable evidence for design. For this reason, he reasoned that God must have used evolution as the means to create and, in doing so, Gray may have been the first person to espouse theistic evolution.

In his book Darwinia, Asa Gray presents a number of essays defending Darwin’s theory. Yet, he also expresses his deepest convictions that nature is filled with indicators of design. He attributed that design to a type of God-ordained, God-guided process. Gray argued that God is the source of all evolutionary change.

blog__inline--why-would-god-create-a-world-where-animals-eat-their-offspring-2

Gray and Darwin struck up a friendship and exchanged around 300 letters. In the midst of their correspondence, Gray asked Darwin if he thought it possible that God used evolution as the means to create. Darwin’s reply revealed that he wasn’t very impressed with this idea.

I cannot persuade myself that a beneficent & omnipotent God would have designedly created the Ichneumonidæ with the express intention of their feeding within the living bodies of caterpillars, or that a cat should play with mice. Not believing this, I see no necessity in the belief that the eye was expressly designed. On the other hand I cannot anyhow be contented to view this wonderful universe & especially the nature of man, & to conclude that everything is the result of brute force. I am inclined to look at everything as resulting from designed laws, with the details, whether good or bad, left to the working out of what we may call chance. Not that this notion at all satisfies me. I feel most deeply that the whole subject is too profound for the human intellect. A dog might as well speculate on the mind of Newton. Let each man hope & believe what he can.1

Darwin could not embrace Gray’s theistic evolution because of the cruelty he saw in nature that seemingly causes untold pain and suffering in animals. Darwin—along with many skeptics today—couldn’t square a world characterized by that much suffering with the existence of a God who is all-powerful, all-knowing, and all-good.

Filial Cannibalism

The widespread occurrence of filial cannibalism (when animals eat their young or consume their eggs after laying them) and abandonment (leading to death) exemplify such cruelty in animals. It seems such a low and brutal feature of nature.

Why would God create animals that eat their offspring and abandon their young?

Is Cruelty in Nature Really Evil?

But what if there are good reasons for God to allow pain and suffering in the animal kingdom? I have written about good scientific reasons to think that a purpose exists for animal pain and suffering (see “Scientists Uncover a Good Purpose for Long-Lasting Pain in Animals” by Fazale Rana).

And, what if animal death is a necessary feature of nature? Other studies indicate that animal death promotes biodiversity and ecosystem stability (see “Of Weevils and Wasps: God’s Good Purpose in Animal Death” by Maureen Moser, and “Animal Death Prevents Ecological Meltdown” by Fazale Rana).

There also appears to be a reason for filial cannibalism and offspring abandonment, at least based on a study by researchers from Oxford University (UK) and the University of Tennessee.2 These researchers demonstrated that filial cannibalism and offspring abandonment comprise a form of parental care.

What? How is that conclusion possible?

It turns out that when animals eat their offspring or abandon their young, the reduction promotes the survival of the remaining offspring. To arrive at this conclusion, the researchers performed mathematical modeling of a generic egg-laying species. They discovered that when animals sacrificed a few of their young, the culling led to greater fitness for their offspring than when animals did not engage in filial cannibalism or egg abandonment.

These behaviors become important when animals lay too many eggs. In order to properly care for their eggs (protect, incubate, feed, and clean), animals confine egg-laying to a relatively small space. This practice leads to a high density of eggs. But this high density can have drawbacks, making the offspring more vulnerable to diseases and lack of sufficient food and oxygen. Filial cannibalism reduces the density, ensuring a greater chance of survival for those eggs that are left behind. So, ironically, when egg density is too high for the environmental conditions, more offspring survive when the parents consume some, rather than none, of the eggs.

So, why lay so many eggs in the first place?

In general, the more eggs that are laid, the greater the number of surviving offspring—assuming there are unlimited resources and no threats of disease. But it is difficult for animals to know how many eggs to lay because the environment is unpredictable and constantly changing. A better way to ensure reproductive fitness is to lay more eggs and remove some of them if the environment can’t sustain the egg density.

So, it appears as if there is a good reason for God to create animals that eat their young. In fact, you might even argue that filial cannibalism leads to a world with less cruelty and suffering than a world where filial cannibalism doesn’t exist at all. This feature of nature is consistent with the idea of an all-powerful, all-knowing, and all-good God who has designed the creation for his good purposes.

Resources

Endnotes
  1. To Asa Gray 22 May [1860],” Darwin Correspondence Project, University of Cambridge, accessed May 15, 2019, https://www.darwinproject.ac.uk/letter/DCP-LETT-2814.xml.
  2. Mackenzie E. Davenport, Michael B. Bansall, and Hope Klug, “Unconventional Care: Offspring Abandonment and Filial Cannibalism Can Function as Forms of Parental Care,” Frontiers in Ecology and Evolution 7 (April 17, 2019): 113, doi:10.3389/fevo.2019.00113.

Reprinted with permission by the author
Original article at:
https://www.reasons.org/explore/blogs/the-cells-design/read/the-cells-design/2019/05/22/why-would-god-create-a-world-where-animals-eat-their-offspring

Pseudogene Discovery Pains Evolutionary Paradigm

Untitled 15
BY FAZALE RANA – MAY 8, 2019

It was one of the most painful experiences I ever had. A few years ago, I had two back-to-back bouts of kidney stones. I remember it as if it were yesterday. Man, did it hurt when I passed the stones! All I wanted was for the emergency room nurse to keep the Demerol coming.

blog__inline--pseudogene-discovery-pains-1

Figure 1: Schematic Depiction of Kidney Stones Moving through the Urinary Tract. Image Credit: Shutterstock

When all that misery was going down, I wished I was one of those rare individuals who doesn’t experience pain. There are some people who, due to genetic mutations, live pain-free lives. This condition is called hypoalgesia. (Of course, there is a serious downside to hypoalgesia. Pain lets us know when our body is hurt or sick. Because hypoalgesics can’t experience pain, they are prone to serious injury, etc.)

Biomedical researchers possess a keen interest in studying people with hypoalgesia. Identifying the mutations responsible for this genetic condition helps investigators understand the physiological processes that undergird the pain sensation. This insight then becomes indispensable to guiding efforts to develop new drugs and techniques to treat pain.

By studying the genetic profile of a 66-year-old woman who lived a lifetime with pain-free injuries, a research team from the UK recently discovered a novel genetic mutation that causes hypoalgesia.1 The mutation responsible for this patient’s hypoalgesia occurred in a pseudogene, a region of the genome considered nonfunctional “junk DNA.”

This discovery adds to the mounting evidence that shows junk DNA is functional. At this point, molecular geneticists have demonstrated that virtually every class of junk DNA has function. This notion undermines the best evidence for common descent and, hence, undermines an evolutionary interpretation of biology. More importantly, the discovery adds support for the competitive endogenous RNA hypothesis, which can be marshaled to support RTB’s genomics model. It is becoming more and more evident to me that genome structure and function reflect the handiwork of a Creator.

The Role of a Pseudogene in Mediating Hypoalgesia

To identify the genetic mutation responsible for the 66-year-old’s hypoalgesia, the research team scanned her DNA along with samples taken from her mother and two children. The team discovered two genetic changes: (1) mutations to the FAAH gene that reduced its expression, and (2) deletion of part of the FAAH pseudogene.

The FAAH gene encodes for a protein called fatty acid amide hydrolase (FAAH). This protein breaks down fatty acid amides. Some of these compounds interact with cannabinoid receptors. These receptors are located in the membranes of cells found in tissues throughout the body. They mediate pain sensation, among other things. When fatty acid amide concentrations become elevated in the circulatory system, it produces an analgesic effect.

Researchers found elevated fatty acid amide levels in the patient’s blood, consistent with reduced expression of the FAAH gene. It appears that both mutations are required for the complete hypoalgesia observed in the patient. The patient’s mother, daughter, and son all display only partial hypoalgesia. The mother and daughter have the same mutation in the FAAH gene but an intact FAAH pseudogene. The patient’s son is missing the FAAH pseudogene, but has a “normal” FAAH gene.

Based on the data, it looks like proper expression levels of the FAAH gene require an intact FAAH pseudogene. This is not the first time that biomedical researchers have observed the same effect. There are a number of gene-pseudogene pairs in which both must be intact and transcribed for the gene to be expressed properly. In 2011, researchers from Harvard University proposed that the competitive endogenous RNA hypothesis explains why transcribed pseudogenes are so important for gene expression.2

The Competitive Endogenous RNA Hypothesis

Biochemists and molecular biologists have long believed that the primary mechanism for regulating gene expression centered around controlling the frequency and amount of mRNA produced during transcription. For housekeeping genes, mRNA is produced continually, while for genes that specify situational proteins, it is produced as needed. Greater amounts of mRNA are produced for genes expressed at high levels and limited amounts for genes expressed at low levels.

Researchers long thought that once the mRNA was produced it would be translated into proteins, but recent discoveries indicate this is not the case. Instead, an elaborate mechanism exists that selectively degrades mRNA transcripts before they can be used to direct the protein production at the ribosome. This mechanism dictates the amount of protein produced by permitting or preventing mRNA from being translated. The selective degradation of mRNA also plays a role in gene expression, functioning in a complementary manner to the transcriptional control of gene expression.

Another class of RNA molecules, called microRNAs, mediates the selective degradation of mRNA. In the early 2000s, biochemists recognized that by binding to mRNA (in the 3′ untranslated region of the transcript), microRNAs play a crucial role in gene regulation. Through binding, microRNAs flag the mRNA for destruction by RNA-induced silencing complex (RISC).

blog__inline--pseudogene-discovery-pains-2

Figure 2: Schematic of the RNA-Induced Silencing Mechanism. Image Credit: Wikipedia

Various distinct microRNA species in the cell bind to specific sites in the 3′ untranslated region of mRNA transcripts. (These binding locations are called microRNA response elements.) The selective binding by the population of microRNAs explains the role that duplicated pseudogenes play in regulating gene expression.

The sequence similarity between the duplicated pseudogene and the corresponding “intact” gene means that the same microRNAs will bind to both mRNA transcripts. (It is interesting to note that most duplicated pseudogenes are transcribed.) When microRNAs bind to the transcript of the duplicated pseudogene, it allows the transcript of the “intact” gene to escape degradation. In other words, the transcript of the duplicated pseudogene is a decoy. The mRNA transcript can then be translated and, hence, the “intact” gene expressed.

It is not just “intact” and duplicated pseudogenes that harbor the same microRNA response elements. Other genes share the same set of microRNA response elements in the 3′ untranslated region of the transcripts and, consequently, will bind the same set of microRNAs. These genes form a network that, when transcribed, will influence the expression of all genes in the network. This relationship means that all the mRNA transcripts in the network can function as decoys. This recognition accounts for the functional utility of unitary pseudogenes.

One important consequence of this hypothesis is that mRNA has dual functions inside the cell. First, it encodes information needed to make proteins. Second, it helps regulate the expression of other transcripts that are part of its network.

Junk DNA and the Case for Creation

Evolutionary biologists have long maintained that identical (or nearly identical) pseudogene sequences found in corresponding locations in genomes of organisms that naturally group together (such as humans and the great apes) provide compelling evidence for shared ancestry. This interpretation was persuasive because molecular geneticists regarded pseudogenes as nonfunctional, junk DNA. Presumably, random biochemical events transformed functional DNA sequences (genes) into nonfunctional garbage.

Creationists and intelligent design proponents had little to offer by way of evidence for the intentional design of genomes. But all this changed with the discovery that virtually every class of junk DNA has function, including all three types of pseudogenes (processed, duplicated, and unitary).

If junk DNA is functional, then the sequences previously thought to show common descent could be understood as shared designs. The competitive endogenous RNA hypothesis supports this interpretation. This model provides an elegant rationale for the structural similarity between gene-pseudogene pairs and also makes sense of the widespread presence of unitary pseudogenes in genomes.

Of course, this insight also supports the RTB genomics model. And that sure feels good to me.

Resources

Endnotes
  1. Abdella M. Habib et al., “Microdeletion in a FAAH Pseudogene Identified in a Patient with High Anandamide Concentrations and Pain Insensitivity,” British Journal of Anaesthesia, advanced access publication, doi:10.1016/j.bja.2019.02.019.
  2. Ana C. Marques, Jennifer Tan, and Chris P. Ponting, “Wrangling for microRNAs Provokes Much Crosstalk,” Genome Biology 12, no. 11 (November 2011): 132, doi:10.1186/gb-2011-12-11-132; Leonardo Salmena et al., “A ceRNA Hypothesis: The Rosetta Stone of a Hidden RNA Language?”, Cell 146, no. 3 (August 5, 2011): 353–58, doi:10.1016/j.cell.2011.07.014.

Reprinted with permission by the author
Original article at:
https://www.reasons.org/explore/blogs/the-cells-design/read/the-cells-design/2019/05/08/pseudogene-discovery-pains-evolutionary-paradigm