Does Information Come from a Mind?

00006

By Fazale Rana – August 14, 2019

Imagine you’re flying over the desert, and you notice a pile of rocks down below. Most likely, you would think little of it. But suppose the rocks were arranged to spell out a message. I bet you would conclude that someone had arranged those rocks to communicate something to you and others who might happen to fly over the desert.

You reach that conclusion because experience has taught you that messages come from persons/people—or, rather, that information comes from a mind. And, toward that end, information serves as a marker for the work of intelligent agency.

blog__inline--does-information-come-from-a-mind

Image credit: Shutterstock

Recently, a skeptic challenged me on this point, arguing that we can identify numerous examples of natural systems that harbor information, but that the information in these systems arose through natural processes—not a mind.

So, does information truly come from a mind? And can this claim be used to make a case for a Creator’s existence and role in life’s origin and design?

I think it can. And my reasons are outlined below.

Information and the Case for a Creator

In light of the (presumed) relationship between information and minds, I find it provocative that biochemical systems are information systems.

Two of the most important classes of information-harboring molecules are nucleic acids (DNA and RNA) and proteins. In both cases, the information content of these molecules arises from the nucleotide and amino acid sequences, respectively, that make up these two types of biomolecules.

The information harbored in nucleotide sequences of nucleic acids and amino acid sequences of proteins is digital information. Digital information is represented by a succession of discrete units, just like the ones and zeroes that encode the information manipulated by electronic devices. In this respect, sequences of nucleotides and amino acids for discrete informational units that encode the information in DNA and RNA and proteins, respectively.

But the information in nucleic acids and proteins also has analog characteristics. Analog information varies in an uninterrupted continuous manner, like radio waves used for broadcasting purposes. Analog information in nucleic acids and proteins are expressed through the three-dimensional structures adopted by both classes of biomolecules. (For more on the nature of biochemical information, see Resources.)

If our experience teaches us that information comes from minds, then the fact that key classes of biomolecules are comprised of both digital and analog information makes it reasonable to conclude that life itself stems from the work of a Mind.

Is Biochemical Information Really Information?

Skeptics, such as philosopher Massimo Pigliucci, often dismiss this particular design argument, maintaining that biochemical information is not genuine information. Instead, they maintain that when scientists refer to biomolecules as harboring information, they are employing an illustrative analogy—a scientific metaphor—and nothing more. They accuse creationists and intelligent design proponents of misconstruing scientists’ use of analogical language to make the case for a Creator.1

In light of this criticism, it is worth noting that the case for a Creator doesn’t merely rest on the presence of digital and analog information in biomolecules, but gains added support from work in information theory and bioinformatics.

For example, information theorist Bernd-Olaf Küppers points out in his classic work Information and the Origin of Life that the structure of the information housed in nucleic acids and proteins closely resembles the hierarchical organization of human language.2 This is what Küppers writes:

The analogy between human language and the molecular genetic language is quite strict. . . . Thus, central problems of the origin of biological information can adequately be illustrated by examples from human language without the sacrifice of exactitude.3

Added to this insight is the work by a team from NIH who discovered that the information content of proteins bears the same mathematical structure as human language. To this end, they discovered that a universal grammar exists that defines the structure of the biochemical information in proteins. (For more details on the NIH team’s work, see Resources.)

In other words, the discovery that the biochemical information shares the same features as human language deepens the analogy between biochemical information and the type of information we create as human designers. And, in doing so, it strengthens the case for a Creator.

Further Studies that Strengthen the Case for a Creator

So, too, does other work, such as studies in DNA barcoding. Biologists have been able to identify, catalog, and monitor animal and plant species using relatively short, standardized segments of DNA within genomes. They refer to these sequences as DNA barcodes that are analogous to the barcodes merchants use to price products and monitor inventory.

Typically, barcodes harbor information in the form of parallel dark lines on a white background, creating areas of high and low reflectance that can be read by a scanner and interpreted as binary numbers. Barcoding with DNA is possible because this biomolecule, at its essence, is an information-based system. To put it another way, this work demonstrates that the information in DNA is not metaphorical, but is in fact informational. (For more details on DNA barcoding, see “DNA Barcodes Used to Inventory Plant Biodiversity” in Resources.)

Work in nanotechnology also strengthens the analogy between biochemical information and the information we create as human designers. For example, a number of researchers are exploring DNA as a data storage medium. Again, this work demonstrates that biochemical information is information. (For details on DNA as a data storage medium, see Resources.)

Finally, researchers have learned that the protein machines that operate on DNA during processes such as transcription, replication, and repair literally operate like a computer system. In fact, the similarity is so strong that this insight has spawned a new area of nanotechnology called DNA computing. In other words, the cell’s machinery manipulates information in the same way human designers manipulate digital information. For more details, take a look at the article “Biochemical Turing Machines ‘Reboot’ the Watchmaker Argument” in Resources.)

The bottom line is this: The more we learn about the architecture and manipulation of biochemical information, the stronger the analogy becomes.

Does Information Come from a Mind?

Other skeptics challenge this argument in a different way. They assert that information can originate without a mind. For example, a skeptic recently challenged me this way:

“A volcano can generate information in the rocks it produces. From [the] information we observe, we can work out what it means. Namely, in this example, that the rock came from the volcano. There was no Mind in information generation, but rather minds at work, generating meaning.

Likewise, a growing tree can generate information through its rings. Humans can also generate information by producing sound waves.

However, I don’t think that volcanoes have minds, nor do trees—at least not the way we have minds.”

–Roland W. via Facebook

I find this to be an interesting point. But, I don’t think this objection undermines the case for a Creator. Ironically, I think it makes the case stronger. Before I explain why, though, I need to bring up an important clarification.

In Roland’s examples, he conflates two different types of information. When I refer to the analogy between human languages and biochemical information, I am specifically referring to semantic information, which consists of combinations of symbols that communicate meaning. In fact, Roland’s point about humans generating information with sound waves is an example of semantic information, with the sounds serving as combinations of ephemeral symbols.

The type of information found in volcanic rocks and tree rings is different from the semantic information found in human languages. It is actually algorithmic information, meaning that it consists of a set of instructions. And technically, the rocks and tree rings don’t contain this information—they result from it.

The reason why we can extract meaning and insight from rocks and tree rings is because of the laws of nature, which correspond to algorithmic information. We can think of these laws as instructions that determine the way the world works. Because we have discovered these laws, and because we have also discovered nature’s algorithms, we can extract insight and meaning from studying rocks and tree rings.

In fact, Küppers points out that biochemical systems also consist of sets of instructions instantiated within the biomolecules themselves. These instructions direct activities of the biomolecular systems and, hence, the cell’s operations. To put it another way, biochemical information is also algorithmic information.

From an algorithmic standpoint, the information content relates to the complexity of the instructions. The more complex the instructions, the greater the information content. To illustrate, consider a DNA sequence that consists of alternating nucleotides, AGAGAGAG . . . and so on. The instructions needed to generate this sequence are:

  1. Add an A
  2. Add a G
  3. Repeat steps 1 and 2, x number of times, where x corresponds to the length of the DNA sequence divided by 2

But what about a DNA sequence that corresponds to a typical gene? In effect, because there is no pattern to that sequence, the set of instructions needed to create that sequence is the sequence itself. In other words, a much greater amount of algorithmic information resides in a gene than in a repetitive DNA sequence.

And, of course, our common experience teaches us that information—whether it’s found in a gene, a rock pile, or a tree ring—comes from a Mind.

Resources

Endnotes
  1. For example, see Massimo Pigliucci and Maarten Boudry, “Why Machine-Information Metaphors Are Bad for Science and Science Education,” Science and Education 20, no. 5–6 (May 2011): 453–71; doi:10.1007/s11191-010-9267-6.
  2. Bernd-Olaf Küppers, Information and the Origin of Life (Boston, MA: MIT Press, 1990), 24–25.
  3. Küppers, Information, 23.

Reprinted with permission by the author

Original article at:
https://www.reasons.org/explore/blogs/the-cells-design/read/the-cells-design/2018/11/21/vocal-signals-smile-on-the-case-for-human-exceptionalism

Frog Choruses Sing Out a Song of Creation

Untitled 24
BY FAZALE RANA – JUNE 12, 2019

My last name, Rana, is Sanskrit in origin, referring to someone who descends from the Thar Ghar aristocracy. Living in Southern California means I don’t often meet Urdu-speaking people who would appreciate the regal heritage connected to my family name. But I do meet a lot of Spanish speakers. And when I introduce myself, I often see raised eyebrows and smiles.

In Spanish, Rana means frog.

My family has learned to embrace our family’s namesake. In fact, when our kids were little, my wife affectionately referred to our five children as ranitas—little frogs.

blog__inline--frog-choruses-sing-out-a-song-of-creation-1

Image: Five Ranitas. Image credit: Shutterstock

Our feelings about these cute and colorful amphibians aside, frogs are remarkable creatures. They engage in some fascinating behaviors. Take courtship, as an example. In many frog species, the males croak to attract the attention of females, with each frog species displaying its own distinct call.

Male frogs croak by filling their vocal sacs with air. This allows them to amplify their croaks for up to a mile away. Oftentimes, male frogs in the same vicinity will all croak together, forming a chorus.

blog__inline--frog-choruses-sing-out-a-song-of-creation-2

Image: Male Frog Croaking to Attract a Female. Image credit: Shutterstock

As it turns out, female frogs aren’t the only ones who respond to frog croaks.

A research team from Japan has spent a lot of time listening to and analyzing frog choruses with the hopes of understanding the mathematical structure of the sounds that frogs collectively make when they call out to females. Once they had the mathematical model in hand, the researchers discovered that they could use it to improve the efficiency of wireless data transfer systems.1

This work serves as one more example of scientists and engineers applying insights from biology to drive technology advances and breakthroughs. This approach to technology development (called biomimetics and bioinspiration)—exemplified by the impressive work of the Japanese researchers—has significance that extends beyond engineering. It can be used to make the case that a Creator must have played a role in the design and history of life by marshaling support for two distinct arguments for God’s existence:

Frog Choruses: A Cacophony or a Symphony?

Anyone who has spent time near a pond at night certainly knows the ruckus that an army of male frogs can make when each of them is vying for the attention of females.

All the male frogs living near the pond want to attract females to the same breeding site, but, in doing so, each individual also wants to attract females to his specific territory. Field observations indicate that, instead of engaging in a croaking free-for-all (with neighboring frogs trying to outperform one another), the army of frogs engages in a carefully orchestrated acoustical presentation. As a result, male frogs avoid call overlap with neighboring males on a short timescale, while synchronizing their croaks with the other frogs to produce a chorus on a longer timescale.

The frogs avoid call overlap by alternating between silence and croaking, coordinating with neighboring frogs so that when one frog rests, another croaks. This alternating back-and-forth makes it possible for each individual frog to be heard amid the chorus, and it also results in a symphonic chorus of frog croaks.

The Mathematical Structure of Frog Choruses

To dissect the mathematical structure of frog choruses, the research team placed three male Japanese tree frogs into individual mesh cages that were set along a straight line, with a two-foot separation between each cage. The researchers recorded the frog’s croaks using microphones placed by each cage.

They observed that all three frogs alternated their calls, forming a triphasic synchronization. One frog croaked continuously for a brief period of time and then would rest, while the other two frogs took their turn croaking and resting. The researchers determined that the rest breaks for the frogs were important because of the amount of energy it takes the frogs to produce a call.

All three frogs would synchronize the start and stop of their calls to produce a chorus followed by a period of silence. They discovered that the time between choruses varied quite a bit, without rhyme or reason, and was typically much longer than the chorus time. On the other hand, the croaking of each individual lasted for a predictable time duration that was followed immediately by the croaking of a neighboring frog.

By analyzing the acoustical data, the researchers developed a mathematical model to describe the croaking of individual frogs and the collective behavior of the frogs when they belted out a chorus of calls. Their model consisted of both deterministic and stochastic components.

Use of Frog Choruses for Managing Data Traffic

The researchers realized that the mathematical model they developed could be applied to control wireless sensor networks, such as those that make up the internet of things. These networks entail an array of sensor nodes that transmit data packets, delivering them to a gateway node by multi-hop communication, with data packets transmitted from sensor to sensor until it reaches the gate. During transmission, it is critical for the system to avoid the collision of data packets. It is also critical to regulate the overall energy consumption of the system, to avoid wasting valuable energy resources.

blog__inline--frog-choruses-sing-out-a-song-of-creation-3

Image: The Internet of Things Made Up of Wireless Sensors. Image credit: Shutterstock

Through simulation studies, the Japanese team demonstrated that the mathematical model inspired by frog choruses averted the collision of data packets in a wireless sensor array, maximized network connectivity, and enhanced efficiency of the array by minimizing power consumption. The researchers conclude, “This study highlights the unique dynamics of frog choruses over multiple time scales and also provides a novel bio-inspired technology.”2

As important as this work may be for inspiring new technologies, as a Christian, I find its real significance in the theological arena.

Frog Choruses and the Argument from Beauty

The grandeur of nature touches the very core of who we are—if we take the time to let it. But, as the work by the Japanese researchers demonstrates, the grandeur we see all around us in nature isn’t confined to what we perceive with our immediate senses. It exists in the underlying mathematical structure of nature. It is nothing short of amazing to think that such exquisite organization and orchestration characterizes frog choruses, so much so that it can inspire sophisticated data management techniques.

From my vantage point, the beauty and mathematical elegance of nature points to the reality of a Creator.

If God created the universe, then it is reasonable to expect it to be a beautiful universe, one that displays an even deeper underlying beauty in the mathematical structure that defines the universe itself and phenomena within the universe. Yet if the universe came into existence through mechanism alone, there isn’t any real reason to think it would display beauty. In other words, the beauty in the world around us signifies the divine.

Furthermore, if the universe originated through uncaused physical mechanisms, there is no reason to think that humans would possess an appreciation for beauty.

A quick survey of the scientific and popular literature highlights the challenge that the origin of our aesthetic sense creates for the evolutionary paradigm.3 Plainly put: evolutionary biologists have no real explanation for the origin of our aesthetic sense. To be clear, evolutionary biologists have posited explanations to account for the genesis of our capacity to appreciate beauty. But after examining these ideas, we walk away with the strong sense that they are not much more than “just-so stories,” lacking any real evidential support.

On the other hand, if human beings are made in God’s image, as Scripture teaches, we should be able to discern and appreciate the universe’s beauty, made by our Creator to reveal his glory and majesty.

Frog Choruses and the Converse Watchmaker Argument

The idea that biological designs—such as the courting behavior of male frogs—can inspire engineering and technology advances is also highly provocative for other reasons. First, it highlights just how remarkable and elegant the designs found throughout the living realm actually are.

I think that the elegance of these designs points to a Creator’s handiwork. It also makes possible a new argument for God’s existence—one I have named the converse Watchmaker argument. (For a detailed discussion, see my essay titled “The Inspirational Design of DNA” in the book Building Bridges.)

The argument can be stated like this:

  • If biological designs are the work of a Creator, then these systems should be so well-designed that they can serve as engineering models for inspiring the development of new technologies.
  • Indeed, this scenario plays out in the engineering discipline of biomimetics.
  • Therefore, it becomes reasonable to think that biological designs are the work of a Creator.

In fact, I will go one step further. Biomimetics and bioinspiration logically arise out of a creation model approach to biology. That designs in nature can be used to inspire engineering makes sense only if these designs arose from an intelligent Mind.

In fact, I will go one step further. Biomimetics and bioinspiration logically arise out of a creation model approach to biology. That designs in nature can be used to inspire engineering makes sense only if these designs arose from an intelligent Mind. The mathematical structure of frog choruses is yet another example of such bioinspiration.

Frogs really are amazing—and regal—creatures. Listening to a frog chorus can connect us to the beauty of the world around us. And it will one day help all of our electronic devices to connect together. And that’s certainly something to sing about.

Resources

Endnotes
  1. Ikkyu Aihara et al., “Mathematical Modelling and Application of Frog Choruses As an Autonomous Distributed Communication System,” Royal Society Open Science 6, no. 1 (January 2, 2019): 181117, doi:10.1098/rsos.181117.
  2. Aihara et al., “Mathematical Modelling and Application.”
  3. For example, see Ferris Jabr, “How Beauty is Making Scientists Rethink Evolution,” The New York Times Magazine, January 9, 2019, https://www.nytimes.com/2019/01/09/magazine/beauty-evolution-animal.html.

Reprinted with permission by the author
Original article at:
https://www.reasons.org/explore/blogs/the-cells-design/read/the-cells-design/2019/06/12/frog-choruses-sing-out-a-song-of-creation

No Time for God to Exist

stevenhawking“We have finally found something that doesn’t have a cause, because
there was no time for a cause to exist in. For me this means that there
is no possibility of a creator, because there is no time for a creator to
have existed in.” ~Steven Hawking

I read a science news article the other day wherein the late astrophysicist, Stephen Hawking, was giving some finalized theories regarding our universe and a creator in his farewell book, “Brief Answers to Big Questions,”. I used to just automatically equate Hawking with the same level of genius as Einstein because folks said he was, so I was supposed to as well; but I dropped that potato real fast when one of his last opines smashed head on into an asteroid at 186,000 miles per second.

In his last days, one of the final issues he addressed was the existence of God. He stated in reference to our universe’s beginning, “We have finally found something that doesn’t have a cause, because there was no time for a cause to exist in. For me this means that there is no possibility of a creator, because there is no time for a creator to have existed in.”

You don’t have to believe in God to perceive that there is something really wonky with that simplified conclusion. Even Einstein held to a pantheistic concept of an impersonal Creative entity. Hawking is stating with all confidence, that God cannot exist because before the Big Bang there was no linear time in which anything could be the cause of anything, therefore, neither could there be an ultimate conciseness to choose to cause something. Zing! What the hey kind of brilliance was that? He certainly wasn’t thinking through all the possibilities when he blurted that one over his synthesizer.

He addressed the God issue with a near idiotic assumption that the universe and specifically linear time had to have God within its boundaries, or perhaps more to the point, a time out of time, in order to exist, rather than a God from a timeless higher dimension outside the creation event, or the sudden explosion of everything from nothing, referred to as the Big Bang.

Why that’s like saying, “I just made you pancakes for breakfast, but unfortunately I didn’t exist because I wasn’t part of the pancakes, so there aren’t any pancakes. So why don’t you go back to bed, and then come back out here after awhile, and see if any pancakes show up. You never know, I might suddenly exist inside the Bisquick box, and then, there they’ll be… all nice and fluffy with butter and syrup on them!”

The whole concept there StephenO, is that an extremely powerful Entity chooses to create a dimension of both physical matter and continuously expanding movement of said matter, including those speedy little photons which is what we like to measure the speed thereof and refer to the results as time. The Entity itself is not a part of Its newly created dimension, any more than you are a part of your scooter, which will probably be enshrined in a prominent place at The Cambridge University now.

Time is an intrinsic prisoner of our expanding universe and is not a requirement nor probability outside of it, regardless of what alternate realities lie beyond its expanse. I cannot help but chortle a bit at Hawking’s final conclusion on the subject, because the one thing he was right on, is that God really cannot be a part of time, which is merely an attribute of the physical universe He made to begin with, so what was he putting in his tea everyday pray tell, that would give him cause to believe that a creator necessarily has to have this attribute of His creation in order to exist, when he made such an utterance?

As a young man he was known to have believed in a creator, but perhaps one reason for the eventual overtly atheistic view, could be that he became set against a perceived mean God for a lifetime of imprisonment in a non-responsive body, which would be understandable; however that angle is purely speculation on my part. Actually, that’s not true. My wife suggested it to me.

At any rate, I would have thought that he would have been more of an outside the box, thinking bigger kind of guy, but I guess his logic got sucked into a black hole in the end. Well, that was kind of a dismal end theory to wrap up with, and I believe I’ll adhere to a much grander and more creative hypothesis myself.

Douglas L. Duncan


doubled

“Silenced” B Cells Loudly Proclaim the Case for a Creator

silencedbcells

BY FAZALE RANA – AUGUST 1, 2018

When I was an undergraduate student studying chemistry and biology, I hated the course work I did in immunology. The immune system is fascinating, to be certain. And, as a student, I marveled at how our body defends itself from invading microorganisms. But, I hated trying to keep track of the bewildering number of the cells that comprise the immune system.

But my efforts to learn about these cells has finally paid off. It allows me to appreciate the recently discovered insights into the role “silenced” B cells play in the immune system. Not only do these insights have important biomedical implications, but, in my view, they also add to the mounting evidence for creation and further validate a creation model approach to biology.

First discovered thirty years ago, these cells were initially deemed nonfunctional junk produced by a flawed immune system. And this view has persisted for three decades.Immunologists viewed silenced B cells as harmful. Presumably, these cells impair immune system function by cluttering up immune tissues. Or worse, they considered these cells to be potentially deadly, contributing to autoimmune disorders. Yet, immunologists are changing their view of’silenced B cells, thanks to the efforts of researchers from Australia.1

A Brief (and Incomplete) Primer on Immunology

To understand the newly discovered role silenced B cells play in the immune system, a brief primer on immunology is in order.

It goes without saying that the immune system’s job is to protect the body from pathogens. To do this, it must recognize pathogens as foreign materials. To put it another way, it must distinguish self from nonself. (Autoimmune disorders result when the immune system mistakes the body’s own tissues as foreign materials, and then attacks itself.)

An incredibly complex biological system, the immune system contains one component called the humoral immune system. This part of the immune system relies on proteins, such as antibodies, circulating in extracellular fluids to mediate the body’s immune response.

Plasma cells secrete antibodies into the circulatory system. Antibodies then bind to the invading pathogen, decorating its surface. The antibodies serve as a beacon that attracts certain immune cells, such as macrophages and killer cells, that will engulf the pathogen, clearing it from the body.

Plasma cells originate in bone marrow as B cells (also known as B lymphocytes). B cells develop from hematopoietic stem cells. As they develop, genes in the developing B cell genome that encode for antibodies (and receptor proteins) undergo rearrangements (just like shuffling a deck of cards). These rearrangements generate genes that encode an ensemble of receptor proteins that reside on the B cell surface, with each receptor protein (and corresponding antibody) recognizing and binding a specific pathogen. Collectively, these cell surface receptors (and antibodies) can detect a large and varied number of foreign agents.

silenced-b-cells-loudly-proclaim-case-for-creator

Image credit: Shutterstock

After developing in the bone marrow, B cells migrate to either the spleen or lymph nodes. Here, the B cells are exposed to the flow of lymph, the fluid that moves through the lymphatic circulatory system. If pathogens have invaded the body, they will encounter B cells in lymph tissue. If a B cell has a receptor that recognizes that particular pathogen, it will bind it. This binding event will trigger the transformation of the B cell. Once activated by the binding event, the B cell migrates into a region of the lymph tissue called the germinal center. Here the B cells undergo clonal expansion, rapidly proliferating into plasma cells and memory B cells. The plasma cells produce antibodies that help identify the pathogen as a foreign invader. The memory B cells hang around in the immune tissue so the immune system can rapidly respond to that pathogen if it invades the body in the future.

A Flaw in the Immune System?

During the B cell maturation process in the bone marrow, about 50 percent of the nascent B cells produce cell surface receptors that bind to materials in the body, instead of pathogens. That is, these B cells can’t discriminate self from nonself. This outcome is a by-product of the random-shuffling mechanism that generates protein receptor diversity. The random shuffling of the genes is equally likely to produce receptors that bind to materials in the body as it is pathogens. But when this misidentification happens, an elaborate quality control system kicks in, either eliminating the faulty B cells or reworking them so that they can be a functioning part of the immune system. This reworking process involves additional gene shuffling with the hope of generating cell receptors that recognize foreign materials.

However, a few of the faulty B cells escape destruction and avoid having their genes reshuffled. In this case, the immune system silences these cells (called anergic cells), but they still hang around in immune tissue, clogging things up. It seemingly gets worse: if these cells become activated they can cause an autoimmune reaction—just the type of sloppy design evolutionary mechanisms would produce. Or is it?

A Critical Role for Silenced B Cells

Recent work by the research team from Australia provides a rationale for the persistence of silenced anergic B cells in the immune system. These cells play a role in combating pathogens such as HIV and campylobacter, which cloak themselves from the immune system by masquerading as part of our body. While these pathogens escape detection by most of the components of our immune system, they can be detected by silenced B cells with receptors that recognize self as nonself.

The silenced B cells are redeemed by the immune system in the germinal center through a process called receptor revision. Here the genes that encode the receptors experience hypermutation, altering their receptors to the extent that they now can recognize foreign materials. But the capacity of the receptors to recognize self serves the immune system well when infectious agents such as HIV or campylobacter invade.

The researchers who made the discovery think that this insight might one day help pathologists do a better job treating autoimmune disorders. They also hope it might lead to a vaccine for HIV.

A Remarkable Turnaround

In a piece for Science Alert, journalist Peter Dockrill summarizes the significance of the discovery: “It’s a remarkable turnaround for a class of immune cells long mistaken for dangerous junk—and one which shows there’s still so much we have to learn about what the immune system can do for us, and how its less than perfectly obvious mechanisms might be leveraged to do us good.”2

The surprise expressed by Dockrill reflects the influence of the evolutionary paradigm and the view that biological systems must be imperfect because of the nature of evolutionary mechanisms. And yet this discovery (along with others discussed in the articles listed in the Resources section) raises questions for me about the validity of the evolutionary paradigm. And it raises questions about the usefulness of this paradigm, as well. Viewing silenced B cell as the flawed outcome of evolutionary processes has stood in the way of discovering their functional importance, delaying work that “might be leveraged to do us good.”

The more we learn about biological systems, the more evident it becomes: Instead of being flawed, biological designs display an ingenuity and a deep rationale for the way they are—as would be expected if they were the handiwork of a Creator.

Resources

Endnotes

  1. Deborah L. Burnett et al., “Germinal Center Antibody Maturation Trajectories Are Determined by Rapid Self/Foreign Discrimination,” Science 360 (April 13, 2018): 223–26, doi: 10.1126/science.aa03859; Ervin E. Kara and Michel C.Nussenzweig, “Redemption for Self-Reactive Antibodies,” Science 360 (April 13, 2018): 152–53, doi:10.1126/science.aat5758.
  2. Peter Dockrill, “Immune Cells We Thought Were ‘Useless’ Are Actually a Weapon Against Infections Like HIV,” Science Alert (April 16, 2018), https://www.sciencealert.com/new-discovery-bad-immune-cells-actually-secret-weapon-against-infection-b-silenced-redemption-lymphocytes.
Reprinted with permission by the author
Original article at:
https://www.reasons.org/explore/blogs/the-cells-design/read/the-cells-design/2018/08/01/silenced-b-cells-loudly-proclaim-the-case-for-a-creator