Frog Choruses Sing Out a Song of Creation

Untitled 24
BY FAZALE RANA – JUNE 12, 2019

My last name, Rana, is Sanskrit in origin, referring to someone who descends from the Thar Ghar aristocracy. Living in Southern California means I don’t often meet Urdu-speaking people who would appreciate the regal heritage connected to my family name. But I do meet a lot of Spanish speakers. And when I introduce myself, I often see raised eyebrows and smiles.

In Spanish, Rana means frog.

My family has learned to embrace our family’s namesake. In fact, when our kids were little, my wife affectionately referred to our five children as ranitas—little frogs.

blog__inline--frog-choruses-sing-out-a-song-of-creation-1

Image: Five Ranitas. Image credit: Shutterstock

Our feelings about these cute and colorful amphibians aside, frogs are remarkable creatures. They engage in some fascinating behaviors. Take courtship, as an example. In many frog species, the males croak to attract the attention of females, with each frog species displaying its own distinct call.

Male frogs croak by filling their vocal sacs with air. This allows them to amplify their croaks for up to a mile away. Oftentimes, male frogs in the same vicinity will all croak together, forming a chorus.

blog__inline--frog-choruses-sing-out-a-song-of-creation-2

Image: Male Frog Croaking to Attract a Female. Image credit: Shutterstock

As it turns out, female frogs aren’t the only ones who respond to frog croaks.

A research team from Japan has spent a lot of time listening to and analyzing frog choruses with the hopes of understanding the mathematical structure of the sounds that frogs collectively make when they call out to females. Once they had the mathematical model in hand, the researchers discovered that they could use it to improve the efficiency of wireless data transfer systems.1

This work serves as one more example of scientists and engineers applying insights from biology to drive technology advances and breakthroughs. This approach to technology development (called biomimetics and bioinspiration)—exemplified by the impressive work of the Japanese researchers—has significance that extends beyond engineering. It can be used to make the case that a Creator must have played a role in the design and history of life by marshaling support for two distinct arguments for God’s existence:

Frog Choruses: A Cacophony or a Symphony?

Anyone who has spent time near a pond at night certainly knows the ruckus that an army of male frogs can make when each of them is vying for the attention of females.

All the male frogs living near the pond want to attract females to the same breeding site, but, in doing so, each individual also wants to attract females to his specific territory. Field observations indicate that, instead of engaging in a croaking free-for-all (with neighboring frogs trying to outperform one another), the army of frogs engages in a carefully orchestrated acoustical presentation. As a result, male frogs avoid call overlap with neighboring males on a short timescale, while synchronizing their croaks with the other frogs to produce a chorus on a longer timescale.

The frogs avoid call overlap by alternating between silence and croaking, coordinating with neighboring frogs so that when one frog rests, another croaks. This alternating back-and-forth makes it possible for each individual frog to be heard amid the chorus, and it also results in a symphonic chorus of frog croaks.

The Mathematical Structure of Frog Choruses

To dissect the mathematical structure of frog choruses, the research team placed three male Japanese tree frogs into individual mesh cages that were set along a straight line, with a two-foot separation between each cage. The researchers recorded the frog’s croaks using microphones placed by each cage.

They observed that all three frogs alternated their calls, forming a triphasic synchronization. One frog croaked continuously for a brief period of time and then would rest, while the other two frogs took their turn croaking and resting. The researchers determined that the rest breaks for the frogs were important because of the amount of energy it takes the frogs to produce a call.

All three frogs would synchronize the start and stop of their calls to produce a chorus followed by a period of silence. They discovered that the time between choruses varied quite a bit, without rhyme or reason, and was typically much longer than the chorus time. On the other hand, the croaking of each individual lasted for a predictable time duration that was followed immediately by the croaking of a neighboring frog.

By analyzing the acoustical data, the researchers developed a mathematical model to describe the croaking of individual frogs and the collective behavior of the frogs when they belted out a chorus of calls. Their model consisted of both deterministic and stochastic components.

Use of Frog Choruses for Managing Data Traffic

The researchers realized that the mathematical model they developed could be applied to control wireless sensor networks, such as those that make up the internet of things. These networks entail an array of sensor nodes that transmit data packets, delivering them to a gateway node by multi-hop communication, with data packets transmitted from sensor to sensor until it reaches the gate. During transmission, it is critical for the system to avoid the collision of data packets. It is also critical to regulate the overall energy consumption of the system, to avoid wasting valuable energy resources.

blog__inline--frog-choruses-sing-out-a-song-of-creation-3

Image: The Internet of Things Made Up of Wireless Sensors. Image credit: Shutterstock

Through simulation studies, the Japanese team demonstrated that the mathematical model inspired by frog choruses averted the collision of data packets in a wireless sensor array, maximized network connectivity, and enhanced efficiency of the array by minimizing power consumption. The researchers conclude, “This study highlights the unique dynamics of frog choruses over multiple time scales and also provides a novel bio-inspired technology.”2

As important as this work may be for inspiring new technologies, as a Christian, I find its real significance in the theological arena.

Frog Choruses and the Argument from Beauty

The grandeur of nature touches the very core of who we are—if we take the time to let it. But, as the work by the Japanese researchers demonstrates, the grandeur we see all around us in nature isn’t confined to what we perceive with our immediate senses. It exists in the underlying mathematical structure of nature. It is nothing short of amazing to think that such exquisite organization and orchestration characterizes frog choruses, so much so that it can inspire sophisticated data management techniques.

From my vantage point, the beauty and mathematical elegance of nature points to the reality of a Creator.

If God created the universe, then it is reasonable to expect it to be a beautiful universe, one that displays an even deeper underlying beauty in the mathematical structure that defines the universe itself and phenomena within the universe. Yet if the universe came into existence through mechanism alone, there isn’t any real reason to think it would display beauty. In other words, the beauty in the world around us signifies the divine.

Furthermore, if the universe originated through uncaused physical mechanisms, there is no reason to think that humans would possess an appreciation for beauty.

A quick survey of the scientific and popular literature highlights the challenge that the origin of our aesthetic sense creates for the evolutionary paradigm.3 Plainly put: evolutionary biologists have no real explanation for the origin of our aesthetic sense. To be clear, evolutionary biologists have posited explanations to account for the genesis of our capacity to appreciate beauty. But after examining these ideas, we walk away with the strong sense that they are not much more than “just-so stories,” lacking any real evidential support.

On the other hand, if human beings are made in God’s image, as Scripture teaches, we should be able to discern and appreciate the universe’s beauty, made by our Creator to reveal his glory and majesty.

Frog Choruses and the Converse Watchmaker Argument

The idea that biological designs—such as the courting behavior of male frogs—can inspire engineering and technology advances is also highly provocative for other reasons. First, it highlights just how remarkable and elegant the designs found throughout the living realm actually are.

I think that the elegance of these designs points to a Creator’s handiwork. It also makes possible a new argument for God’s existence—one I have named the converse Watchmaker argument. (For a detailed discussion, see my essay titled “The Inspirational Design of DNA” in the book Building Bridges.)

The argument can be stated like this:

  • If biological designs are the work of a Creator, then these systems should be so well-designed that they can serve as engineering models for inspiring the development of new technologies.
  • Indeed, this scenario plays out in the engineering discipline of biomimetics.
  • Therefore, it becomes reasonable to think that biological designs are the work of a Creator.

In fact, I will go one step further. Biomimetics and bioinspiration logically arise out of a creation model approach to biology. That designs in nature can be used to inspire engineering makes sense only if these designs arose from an intelligent Mind.

In fact, I will go one step further. Biomimetics and bioinspiration logically arise out of a creation model approach to biology. That designs in nature can be used to inspire engineering makes sense only if these designs arose from an intelligent Mind. The mathematical structure of frog choruses is yet another example of such bioinspiration.

Frogs really are amazing—and regal—creatures. Listening to a frog chorus can connect us to the beauty of the world around us. And it will one day help all of our electronic devices to connect together. And that’s certainly something to sing about.

Resources

Endnotes
  1. Ikkyu Aihara et al., “Mathematical Modelling and Application of Frog Choruses As an Autonomous Distributed Communication System,” Royal Society Open Science 6, no. 1 (January 2, 2019): 181117, doi:10.1098/rsos.181117.
  2. Aihara et al., “Mathematical Modelling and Application.”
  3. For example, see Ferris Jabr, “How Beauty is Making Scientists Rethink Evolution,” The New York Times Magazine, January 9, 2019, https://www.nytimes.com/2019/01/09/magazine/beauty-evolution-animal.html.

Reprinted with permission by the author
Original article at:
https://www.reasons.org/explore/blogs/the-cells-design/read/the-cells-design/2019/06/12/frog-choruses-sing-out-a-song-of-creation

The Endosymbiont Hypothesis: Things Aren’t What They Seem to Be

theendosymbionthypothesis

BY FAZALE RANA – AUGUST 29, 2018

Sometimes, things just aren’t what they seem to be. For example, when it comes to the world of biology:

  • Fireflies are not flies; they are beetles
  • Prairie dogs are not dogs; they are rodents
  • Horned toads are not toads; they are lizards
  • Douglas firs are not firs; they are pines
  • Silkworms are not worms; they are caterpillars
  • Peanuts are not nuts; they are legumes
  • Koala bears are not bears; they are marsupials
  • Guinea pigs are not from Guinea and they are not pigs; they are rodents from South America
  • Banana trees are not trees; they are herbs
  • Cucumbers are not vegetables; they are fruit
  • Mexican jumping beans are not beans; they are seeds with a larva inside

And . . . mitochondria are not alphaproteobacteria. In fact, evolutionary biologists don’t know what they are—at least, if recent work by researchers from Uppsala University in Sweden is to be taken seriously.1

As silly as this list may be, evolutionary biologists are not amused by this latest insight about the identity of mitochondria. Uncertainty about the evolutionary origin of mitochondria removes from the table one of the most compelling pieces of evidence for the endosymbiont hypothesis.

A cornerstone idea within the modern evolutionary framework, biology textbooks often present the endosymbiont hypothesis as a well-evidenced, well-established evolutionary explanation for the origin of complex cells (eukaryotic cells). Yet, confusion and uncertainty surround this idea, as this latest discovery attests. To put it another way: when it comes to the evolutionary explanation for the origin of complex cells in biology textbooks, things aren’t what they seem.

The Endosymbiont Hypothesis

Most evolutionary biologists believe that the endosymbiont hypothesis is the best explanation for one of the key transitions in life’s history—namely, the origin of complex cells from bacteria and archaea. Building on the ideas of Russian botanist Konstantin Mereschkowski, Lynn Margulis (1938–2011) advanced the endosymbiont hypothesis to explain the origin of eukaryotic cells in the 1960s.

Since that time, Margulis’s ideas on the origin of complex cells have become an integral part of the evolutionary paradigm. Many life scientists find the evidence for this hypothesis compelling; consequently, they view it as providing broad support for an evolutionary explanation for the history and design of life.

According to this hypothesis, complex cells originated when symbiotic relationships formed among single-celled microbes after free-living bacterial and/or archaeal cells were engulfed by a “host” microbe. (Ingested cells that take up permanent residence within other cells are referred to as endosymbionts.)

the-endosymbiont-hypothesis

The Evolution of Eukaryotic Cells According to the Endosymbiont Hypothesis

Image source: Wikipedia

Presumably, organelles such as mitochondria were once endosymbionts. Evolutionary biologists believe that once taken inside the host cell, the endosymbionts took up permanent residence, with the endosymbiont growing and dividing inside the host. Over time, endosymbionts and hosts became mutually interdependent, with the endosymbionts providing a metabolic benefit for the host cell. The endosymbionts gradually evolved into organelles through a process referred to as genome reduction. This reduction resulted when genes from endosymbionts’ genomes were transferred into the genome of the host organism. Eventually, the host cell evolved machinery to produce proteins needed by the former endosymbiont and processes to transport those proteins into the organelle’s interior.

Evidence for the Endosymbiont Hypothesis

The morphological similarity between organelles and bacteria serve as one line of evidence for the endosymbiont hypothesis. For example, mitochondria are about the same size and shape as a typical bacterium and they have a double membrane structure like the gram-negative cells. These organelles also divide in a way that is reminiscent of bacterial cells.

Biochemical evidence also seems to support the endosymbiont hypothesis. Evolutionary biologists view the presence of the diminutive mitochondrial genome as a vestige of this organelle’s evolutionary history. Additionally, biologists also take the biochemical similarities between mitochondrial and bacterial genomes as further evidence for the evolutionary origin of these organelles.

The presence of the unique lipid cardiolipin in the mitochondrial inner membrane also serves as evidence for the endosymbiont hypothesis. Cardiolipin is an important lipid component of bacterial inner membranes. Yet, it is not found in the membranes of eukaryotic cells—except for the inner membranes of mitochondria. In fact, biochemists consider it a signature lipid for mitochondria and a vestige of this organelle’s evolutionary history.

But, as compelling as these observations may be, for many evolutionary biologists phylogenetic analysis provides the most convincing evidence for the endosymbiont hypothesis. Evolutionary trees built from the DNA sequences of mitochondria, bacteria, and archaea place these organelles among a group of microbes called alphaproteobacteria. And, for many (but not all) evolutionary trees, mitochondria cluster with the bacteria, Rickettsiales.For evolutionary biologists, these results mean that the endosymbionts that eventually became the first mitochondria were alphaproteobacteria. If mitochondria were notevolutionarily derived from alphaproteobacteria, why would the DNA sequences of these organelles group with these bacteria in evolutionary trees?

But . . . Mitochondria Are Not Alphaproteobacteria

Even though evolutionary biologists seem certain about the phylogenetic positioning of mitochondria among the alphaproteobacteria, there has been an ongoing dispute as to the precise positioning of mitochondria in evolutionary trees, specifically whether or not mitochondria group with Rickettsiales. Looking to bring an end to this dispute, the Uppsula University research team developed a more comprehensive data set to build their evolutionary trees, with the hope that they could more precisely locate mitochondria among alphaproteobacteria. The researchers point out that the alphaproteobacterial genomes used to construct evolutionary trees stem from microbes found in clinical and agricultural settings, which is a small sampling of the alphaproteobacteria found in nature. Researchers knew this was a limitation, but, up to this point, this was the only DNA sequence data available to them.

To avoid the bias that arises from this limited data set, the researchers screened databases of DNA sequences collected from the Pacific and Atlantic Oceans for undiscovered alphaproteobacteria. They uncovered twelve new groups of alphaproteobacteria. In turn, they included these new genome sequences along with DNA sequences from previously known alphaproteobacterial genomes to build a new set of evolutionary trees. To their surprise, their analysis indicates that mitochondria are not alphaproteobacteria.

Instead, it looks like mitochondria belong to a side branch that separated from the evolutionary tree before alphaproteobacteria emerged. Adding to their surprise, the research team was unable to identify any bacterial species alive today that would group with mitochondria.

To put it another way: the latest study indicates that evolutionary biologists have no candidate for the evolutionary ancestor of mitochondria.

Does the Endosymbiont Hypothesis Successfully Account for the Origin of Mitochondria?

Evolutionary biologists suggest that there’s compelling evidence for the endosymbiont hypothesis. But when researchers attempt to delineate the details of this presumed evolutionary transition, such as the identity of the original endosymbiont, it becomes readily apparent that biologists lack a genuine explanation for the origin of mitochondria and, in a broader context, the origin of eukaryotic cells.

As I have written previously, the problems with the endosymbiont hypothesis are not limited to the identity of the evolutionary ancestor of mitochondria. They are far more pervasive, confounding each evolutionary step that life scientists envision to be part of the emergence of complex cells. (For more examples, see the Resources section.)

When it comes to the endosymbiont hypothesis, things are not what they seem to be. If mitochondria are not alphaproteobacteria, and if evolutionary biologists have no candidate for their evolutionary ancestor, could it be possible that they are the handiwork of the Creator?

Resources

Endnotes

  1. Joran Martijn et al., “Deep Mitochondrial Origin Outside the Sampled Alphaproteobacteria,” Nature 557 (May 3, 2018): 101–5, doi:10.1038/s41586-018-0059-5.
Reprinted with permission by the author
Original article at:
https://www.reasons.org/explore/blogs/the-cells-design/read/the-cells-design/2018/08/29/the-endosymbiont-hypothesis-things-aren-t-what-they-seem-to-be

The Multiplexed Design of Neurons

multiplexeddesignneurons

BY FAZALE RANA – AUGUST 22, 2018

In 1910, Major General George Owen Squier developed a technique to increase the efficiency of data transmission along telephone lines that is still used today in telecommunications and computer networks. This technique, called multiplexing, allows multiple signals to be combined and transmitted along a single cable, making it possible to share a scarce resource (available phone lines, in Squier’s day).

Today, there are a number of ways to carry out multiplexing. One of them is called time-division multiplexing. While other forms of multiplexing can be used for analog data, this technique can only be applied to digital data. Data is transmitted as a collection of bits along a single channel separated by a time interval that allows the data groups to be directed to the appropriate receiver.

Researchers from Duke University have discovered that neurons employ time-division multiplexing to transmit multiple electrical signals along a single axon.1 The remarkable similarity between data transmission techniques used by neurons and telecommunication systems and computer networks is provocative. It can also be marshaled to add support to the revitalized Watchmaker argument for God’s existence and role in the origin and design of life.

A brief primer on neurons will help us better appreciate the work of the Duke research team.

Neurons

The primary component of the nervous system (the brain, spinal cord, and the peripheral system of nerves), neurons are electrically excitable cells that rely on electrochemical processes to receive and send electrical signals. By connecting to each other through specialized structures called synapses, neurons form pathways that transmit information throughout the nervous system.

Neurons consist of the soma or cell body, along with several outward extending projections called dendrites and axons.

multiplexed-design-of-neuronsImage credit: Wikipedia

Dendrites are “tree-like” projections that extend from the soma into the synaptic space. Receptors on the surface of dendrites bind neurotransmitters deposited by adjacent neurons in the synapse. These binding events trigger an electrical signal that travels along the length of the dendrites to the soma. However, axons conduct electrical impulses away from the soma toward the synapse, where this signal triggers the release of neurotransmitters into the extracellular medium, initiating electrical activity in the dendrites of adjacent neurons.

Sensory Neurons

In the world around us, many things happen at the same time. And we need to be aware of all of these events. Sensory neurons react to stimuli, communicating information about the environment to our brains. Many different types of sensory neurons exist, making possible our sense of sight, smell, taste, hearing, touch, and temperature. These sensory neurons have to be broadly tuned and may have to respond to more than one environmental stimulus at the same time. An example of this scenario would be carrying on a conversation with a friend at an outdoor café while the sounds of the city surround us.

The Duke University researchers wanted to understand the mechanism neurons employ when they transmit information about two or more environmental stimuli at the same time. To accomplish this, the scientists trained two macaques (monkeys) to look in the direction of two distinct sounds produced at two different locations in the room. After achieving this step, the researchers planted electrodes into the inferior colliculus of the monkeys’ brains and used these electrodes to record the activity of single neurons as the monkeys responded to auditory stimuli. The researchers discovered that each sound produced a unique firing rate along single neurons and that when the two sounds were presented at the same time, the neuron transmitting the electrical signals alternated back and forth between the two firing rates. In other words, the neurons employed time-division multiplexing to transmit the two signals.

Neuron Multiplexing and the Case for Creation

The capacity of neurons to multiplex signals generated by environmental stimuli exemplifies the elegance and sophistication of biological designs. And it is discoveries such as these that compel me to believe that life must stem from the work of a Creator.

But the case for a Creator extends beyond the intuition of design. Discoveries like this one breathe new life into the Watchmaker argument.

British natural theologian William Paley (1743–1805) advanced this argument by pointing out that the characteristics of a watch—with the complex interaction of its precision parts for the purpose of telling time—implied the work of an intelligent designer. Paley asserted by analogy that just as a watch requires a watchmaker, so too, does life require a Creator, since organisms display a wide range of features characterized by the precise interplay of complex parts for specific purposes.

Over the centuries, skeptics have maligned this argument by claiming that biological systems only bear a superficial similarity to human designs. That is, the analogy between human designs and biological systems is weak and, therefore, undermines the conclusion that a Divine Watchmaker exits. But, as I discuss in The Cell’s Design, the discovery of molecular motors, biochemical watches, and DNA computers—biochemical complexes with machine-like characteristics—energizes the argument. These systems are identical to the highly sophisticated machines and devices we build as human designers. In fact, these biochemical systems have been directly incorporated into nanotechnologies. And, we recognize that motors and computers, not to mention watches, come from minds. So, why wouldn’t we conclude that these biochemical systems come from a mind, as well?

Analogies between human machines and biological systems are not confined to biochemical systems. We see them at the biological level as well, as the latest work by the research team from Duke University illustrates.

It is fascinating to me that as we learn more about living systems, whether at the molecular scale, the cellular level, or the systems stage, we discover more and more instances in which biological systems bear eerie similarities to human designs. This learning strengthens the Watchmaker argument and the case for a Creator.

Resources

Endnotes

  1. Valeria C. Caruso et al., “Single Neurons May Encode Simultaneous Stimuli by Switching between Activity Patterns,” Nature Communications 9 (2018): 2715, doi:10.1038/s41467-018-05121-8.
Reprinted with permission by the author
Original article at:
https://www.reasons.org/explore/blogs/the-cells-design/read/the-cells-design/2018/08/22/the-multiplexed-design-of-neurons

Design Principles Explain Neuron Anatomy

designprinciples

BY FAZALE RANA – AUGUST 15, 2018

It’s one of the classic episodes of I Love Lucy. Originally aired on September 15, 1952, the episode entitled “Job Switching” finds Lucy and Ethel working at a candy factory. They have been assigned to an assembly line, where they are supposed to pick up pieces of candy from a moving conveyor belt, wrap them, and place the candy back on the assembly line. But the conveyor belt moves too fast for Lucy and Ethel to keep up. Eventually, they both start stuffing pieces of candy into their mouths, under their hats, and in their blouses, as fast as they can as pieces of candy on the assembly line quickly move beyond their reach—a scene of comedic brilliance.

This chaotic (albeit hilarious) scene is a good analogy for how neurons would transmit electrical signals throughout the nervous system if not for the clever design of the axons that project from the nerve cell’s soma, or cell body.

The principles that undergird the design of axons were recently discovered by a team of bioengineers at the University of California, San Diego (UCSD).1 Insights such as this highlight the elegant designs that characterize biological systems—designs worthy to be called the Creator’s handiwork—no joke.

Neurons

The primary component of the nervous system (the brain, spinal cord, and the peripheral system of nerves), neurons are electrically excitable cells, thanks to electrochemical processes that take place across their cell membranes. These electrochemical activities allow the cells to receive and send electrical signals. By connecting to each other through specialized structures called synapses, neurons form pathways that transmit information throughout the nervous system. Neurologists refer to these pathways as neural circuits.

The heart of a neuron is the soma or cell body. This portion of the cell harbors the nucleus. Two sets of projections emanate from the soma: dendrites and axons. Dendrites are “tree-like” projections that extend from the soma into the synaptic space. Receptors on the surface of dendrites bind neurotransmitters deposited by adjacent neurons in the synapse. These binding events trigger an electrical signal that travels along the length of the dendrites to the soma. On the other hand, axons conduct electrical impulses away from the soma toward the synapse where this signal triggers the release of neurotransmitters into the extracellular medium, initiating electrical activity in the dendrites of adjacent neurons. Many dendrites feed the soma, but the soma gives rise to only a single axon, though the axon can branch extensively for some types of nerve cells. Axons vary significantly in terms of their diameter and length. Their diameter ranges from 1 to 20 microns. Axons can be quite long, up to a meter in length.

design-principles-explain-neuron-anatomy

Image: A Neuron. Image source: Wikipedia

The electrical excitability of neurons stems from the charge separation across its cell or plasma membrane that arises due to concentration differences in positively charged sodium, potassium, and calcium ions between the cell’s interior and exterior surroundings. This charge difference sets up a voltage across the membrane that is maintained by the activity of proteins embedded within the membranes called ion pumps. This voltage is called the resting potential. When the neuron binds neurotransmitters, this event triggers membrane-bound proteins called ion channels to open up, allowing ions to flow across the membrane. This causes a localized change in the membrane voltage that propagates along the length of the dendrite or axon. This propagating voltage change is called an action potential. When the action potential reaches the end of the axon, it triggers the release of neurotransmitters into the synaptic space.

Why Are Neurons the Way They Are?

The UCSD researchers wanted to understand the principles that undergird the neuron design, specifically why the length and diameter of the axons varies so much. Previous studies indicate that axons aren’t structured to minimize the use of cellular material—otherwise they wouldn’t be so long and convoluted. Nor are they structured for speed because axons don’t propagate electrical signals as fast as they could, theoretically speaking.

Even though the UCSD bioengineers adhere to the evolutionary paradigm, they were convinced that design principles must exist that explain the anatomy and physiology of neurons. From my perspective, their conviction is uncharacteristic of many life scientists because of the nature of evolutionary mechanisms (unguided, historically contingent processes that co-opt and cobble together existing designs to create new biological systems). Based on these mechanisms, there need not be any rationale for why things are the way they are. In fact, many evolutionary biologists view most biological systems as flawed, imperfect systems that are little more than kludge jobs.

But their conviction paid off. They discovered an elegant rationale that explains the variation in axon lengths.

Refraction Ratio

The UCSD investigators reasoned that the cellular architecture of axons may reflect a trade-off between (1) the speed of signal transduction along the axon, and (2) the time it takes the axon to reset the resting potential after the action potential propagates along the length of the axon and to ready the cell for the next round of neurotransmitter release.

To test this idea, the research team defined a quantity they dubbed the refraction ratio. This is the ratio of the refractory period of a neuron and the time it takes the electrical signal to transmit along the length of the axon. These researchers calculated the refraction ratio for 12,000 axon branches of rat basket cells. (These are a special type of neuron with heavily branched axons.) They found the information they needed for these calculations in the NeuroMorpho database. They determined that the average value for the refraction ratio was 0.92. The ideal value for the refraction ratio is 1.0. A value of 1.0 for the refraction ratio reflects optimal efficiency. In other words, the refraction ratio appears to be nearly optimal.

If not for this optimization, then signal transmission along axons would suffer the same fate as the pieces of candy on the assembly line manned by Lucy and Ethel. Things would become a jumbled mess along the length of the axons and at the synaptic terminus. And, if this happened, the information transmitted by the neurons would be lost.

The researchers concluded that the axon diameter—and, more importantly, its length—are varied to ensure that the refraction ratio remains as close to 1.0 as possible. This design principle explains why the shape, length, and width of axons varies so much. The reset time (refractory period) cannot be substantially altered. But the axon geometry can be altered, and this variation controls the transmission time of the electrical signal along the axon. To put it another way, axon geometry is analogous to slowing down or speeding up the conveyor belt to ensure that the candy factory workers can wrap as many pieces of candy as possible, without having to eat any or tuck them under their hats.

The Importance of Axon Geometry

The researchers from UCSD think that the design principles they have uncovered may be helpful in understanding some neurological disorders. They reason that if a disease leads to changes in neuronal anatomy, the axon geometry may no longer be optimized (causing the refraction ratio to deviate from its ideal value). This deviation will lead to loss of information when nerve cells transmit electrical signals through neural circuits, potentially contributing to the etiology of neurological diseases.

This research team also thinks that their insights might have use in computer technology. Understanding the importance of refraction ratio should benefit the design of machine-learning systems based on brain-like neural networks. At this time, the design of machine-learning systems doesn’t account for the time it takes for signals to reach neural network nodes. By incorporating this temporal parameter into the design, the researchers believe that they can dramatically improve the power of neural networks. In fact, this research team is now building new types of machine-learning architectures based on these new insights.2

Axon Geometry and the Case for Creation

The elegant, optimized, sophisticated, and ingenious design displayed by axon geometry is the type of evidence that convinced me, as an agnostic graduate student studying biochemistry, that life must stem from the work of a Creator. The designs we observe in biology (and biochemistry) are precisely the types of designs that we would expect to see if a Creator was responsible for life’s origin, history, and design.

On the other hand, evolutionary mechanisms (based on unguided, directionless processes that rely on co-opting and modifying existing designs to create biological innovation) are expected to yield biological designs that are inherently limited and flawed. For many life scientists, the varying length and meandering, convoluted paths taken by axons serve as a reminder that evolution produces imperfect designs, just good enough for survival, but nothing more.

And, in spite of this impoverished view of biology, the UCSD bioengineers were convinced that there must be a design principle that explained the variable length of axons. And herein lies the dilemma faced by many life scientists. The paradigm they embrace demands that they view biological systems as flawed and imperfect. Yet, biological systems appear to be designed for a purpose. And, hence, biologists can’t stop from using design language when they describe the structure and function of these systems. Nor can they keep themselves from seeking design principles when they study the architecture and operation of these systems. In other words, many life scientists operate as if life was the product of a Creator’s handiwork, though they might vehemently deny God’s influence in shaping biology—and even go as far as denying God’s existence. In this particular case, the commitment these researchers had to a de facto design paradigm paid off handsomely for them—and scientific advance.

The Converse Watchmaker Argument

Along these lines, it is provocative that the insights the researchers gleaned regarding axon geometry and the refraction ratio may well translate into improved designs for neural networks and machine-learning systems. The idea that biological designs can inspire engineering and technology advances makes possible a new argument for God’s existence—one I have named the converse Watchmaker argument.

The argument goes something like this: if biological designs are the work of a Creator, then these systems should be so well-designed that they can serve as engineering models and otherwise inspire the development of new technologies.

At some level, I find the converse Watchmaker argument more compelling than the classical Watchmaker analogy. Again, it is remarkable to me that biological designs can inspire engineering efforts.

It is even more astounding to think that engineers would turn to biological designs to inspire their work if biological systems were truly generated by an unguided, historically contingent process, as evolutionary biologists claim.

Using biological designs to guide engineering efforts seems to be fundamentally incompatible with an evolutionary explanation for life’s origin and history. To think otherwise is only possible after taking a few swigs of “Vitameatavegamin” mix.

Resources

Endnotes

  1. Francesca Puppo, Vivek George, and Gabriel A. Silva, “An Optimized Structure-Function Design Principle Underlies Efficient Signaling Dynamics in Neurons,” Scientific Reports 8 (2018): 10460, doi:10.1038/s41598-018-28527-2.
  2. Katherine Connor, “Why Are Neuron Axons Long and Spindly? Study Shows They’re Optimizing Signaling Efficiency,” UC San Diego News Center, July 11, 2018, https://ucsdnews.ucsd.edu/pressrelease/why_are_neuron_axons_long_and_spindly.
Reprinted with permission by the author
Original article at:
https://www.reasons.org/explore/blogs/the-cells-design/read/the-cells-design/2018/08/15/design-principles-explain-neuron-anatomy

Why Are Whales So Big? In Wisdom God Made Them That Way

whyarewhalessobig

BY FAZALE RANA – APRIL 18, 2018

When I was in high school, I had the well-deserved reputation of being a wise guy—though the people who knew me then might have preferred to call me a wise—, instead. Either way, for being a wise guy, I sure didn’t display much wisdom during my teenage years.

I would like to think that I am wiser today. But, the little wisdom I do possess didn’t come easy. To quote singer and songwriter, Helen Reddy, “It’s wisdom born of pain.”

Life’s hardships sure have a way of teaching you lessons. But, I also learned that there is a shortcut to gaining wisdom—if you are wise enough to recognize it. (See what I did there?) It is better to solicit the advice of wise people than to gain wisdom through life’s bitter experiences. And, perhaps there was no wiser person ever than Solomon. Thankfully, Solomon’s wisdom was captured in the book of Proverbs. Many of life’s difficulties can be sidestepped if we are willing to heed Solomon’s advice.

Solomon gained his wisdom through observation and careful reflection. But, his wisdom also came through divine inspiration, and according to Solomon, it was through wisdom that God created the world in which we live (Proverbs 8:22–31). And, it is out of this wisdom that the Holy Spirit inspired Solomon to offer the insights found in the Proverbs.

In Psalm 104, the Psalmist (presumably David) echoes the same idea as Solomon: God created our world through wisdom. The Psalmist writes:

How many are your works, Lord!

In wisdom you made them all;

Based on Proverbs 8 and Psalm 104, I would expect God’s wisdom to be manifested in the created order. The Creator’s fingerprints—so evident in nature—should not only reflect the work of intelligent agency but also display undeniable wisdom. In my view, that wisdom should be reflected in the elegance, cleverness, and ingenuity of the designs seen throughout nature. Designs that reflect an underlying purpose. And these features are exactly what we observe when we study the biological realm—as demonstrated by recent work on aquatic mammal body size conducted by investigators from Stanford University.1

Body Sizes of Aquatic Mammals

Though the majority of the world’s mammals live in terrestrial habitats, the most massive members of this group reside in Earth’s oceans. For evolutionary biologists, common wisdom has it that the larger size of aquatic mammals reflects fewer evolutionary constraints on their body size because they live in the ocean. After all, the ocean habitat is more expansive than those found on land, and aquatic animals don’t need to support their weight because they are buoyed by the ocean.

As it turns out, common wisdom is wrong in this case. Through the use of mathematical modeling (employing body mass data from about 3,800 living species of aquatic mammals and around 3,000 fossil species), the research team from Stanford learned that living in an aquatic setting imposes tight constraints on body size, much more so than when animals live on land. In fact, they discovered (all things being equal) that the optimal body mass for aquatic mammals is around 1,000 pounds. Interestingly, the body mass distributions for members of the order Sirenia (dugongs and manatees), and the clades Cetacea (whales and dolphins), and Pinnipeds (sea lions and seals) cluster near 1,000 pounds.

Scientists have learned that the optimal body mass of aquatic mammals displays an underlying biological rationale and logic. It reflects a trade-off between two opposing demands: heat retention and caloric intake. Because the water temperatures of the oceans are below mammals’ body temperatures, heat retention becomes a real problem. Mammals with smaller bodies can’t consume enough food to compensate for heat loss to the oceans, and they don’t have the mass to retain body heat. The way around this problem is to increase their body mass. Larger bodies do a much better job at retaining heat than do smaller bodies. But, the increase in body mass can’t go unchecked. Maintaining a large body requires calories. At some point, metabolic demands outpace the capacity for aquatic mammals to feed, so body mass has to be capped (near 1,000 pounds).

The researchers noted a few exceptions to this newly discovered “rule.” Baleen whales have a body mass that is much greater than 1,000 pounds. But, as the researchers noted, these creatures employ a unique feeding mechanism that allows them to consume calories needed to support their massive body sizes. Filter feeding is a more efficient way to consume calories than hunting prey. The other exception is creatures such as otters. The researchers believe that their small size reflects a lifestyle that exploits both aquatic and terrestrial habitats.

Argument for God’s Existence from Wisdom

The discovery that the body mass of aquatic mammals has been optimized is one more example of the many elegant designs found in biological systems—designs worthy to be called the Creator’s handiwork. However, from my perspective, this optimization also reflects the Creator’s sagacity as he designed mammals for the purpose of living in the earth’s oceans.

But, instead of relying on intuition alone to make a case for a Creator, I want to present a formal argument for God’s existence based on the wisdom of biology’s designs. To make this argument, I follow after philosopher Richard Swinburne’s case for God’s existence based on beauty. Swinburne argues, “If God creates a universe, as a good workman he will create a beautiful universe. On the other hand, if the universe came into existence without being created by God, there is no reason to suppose that it would be a beautiful universe.”2 In other words, the beauty in the world around us signifies the Divine.

In like manner, if God created the universe, including the biological realm, we should expect to see wisdom permeating the designs in nature. On the other hand, if the universe came into being without God’s involvement, then there is no reason to think that the designs in nature would display a cleverness and ingenuity that affords a purpose—a sagacity, if you will. In fact, evolutionary biologists are quick to assert that most biological designs are flawed in some way. They argue that there is no purpose that undergirds biological systems. Why? Because evolutionary processes do not produce biological systems from scratch, but from preexisting systems that are co-opted through a process dubbed exaptation (by the late evolutionary biologist Stephen Jay Gould), and then modified by natural selection to produce new designs.3 According to biologist Ken Miller:

“Evolution . . . does not produce perfection. The fact that every intermediate stage in the development of an organ must confer a selective advantage means that the simplest and most elegant design for an organ cannot always be produced by evolution. In fact, the hallmark of evolution is the modification of pre-existing structures. An evolved organism, in short, should show the tell-tale signs of this modification.”4

And yet we see designs in biology that are not just optimized, but characterized by elegance, cleverness, and ingenuity—wisdom.

Truly, God is a wise guy.

Resources

Endnotes

  1. William Gearty, Craig R. McClain, and Jonathan L. Payne, “Energetic Tradeoffs Control the Size Distribution of Aquatic Mammals,” Proceedings of the National Academy of Sciences USA (March 2018): doi:10.1073/pnas.1712629115.
  2. Richard Swinburne, The Existence of God, 2nd ed. (New York: Oxford University Press, 2004), 190–91.
  3. Stephen Jay Gould and Elizabeth S. Vrba, “Exaptation: A Missing Term in the Science of Form,” Paleobiology8 (January 1, 1982): 4–15, doi:10.1017/S0094837300004310.
  4. Kenneth R. Miller, “Life’s Grand Design,” Technology Review 97 (February/March 1994): 24–32.
Reprinted with permission by the author
Original article at:
https://www.reasons.org/explore/blogs/the-cells-design/read/the-cells-design/2018/04/18/why-are-whales-so-big-in-wisdom-god-made-them-that-way

Is the Laminin “Cross” Evidence for a Creator?

isthelaminincrossevidence

BY FAZALE RANA – JANUARY 31, 2018

As I interact with people on social media and travel around the country to speak on the biochemical evidence for a Creator, I am frequently asked to comment on laminin.1 The people who mention this protein are usually quite excited, convinced that its structure provides powerful scientific evidence for the Christian faith. Unfortunately, I don’t agree.

Motivating this unusual question is the popularized claim of a well-known Christian pastor that laminin’s structure provides physical evidence that the God of the Bible created human beings and also sustains our lives. While I wholeheartedly believe God did create and does sustain human life, laminin’s apparent cross-shape does not make the case.

Laminin is one of the key components of the basal lamina, a thin sheet-like structure that surrounds cells in animal tissue. The basal lamina is part of the extracellular matrix (ECM). This structure consists of a meshwork of fibrous proteins and polysaccharides secreted by the cells. It forms the space between cells in animal tissue. The ECM carries out a wide range of functions that include providing anchor points and support for cells.

Laminin is a relatively large protein made of three different protein subunits that combine to form a t-shaped structure when the flexible rod-like regions of laminin are fully extended. Each of the four “arms” of laminin contains sites that allow this biomolecule to bind to other laminin molecules, other proteins (like collagen), and large polysaccharides. Laminin also provides a binding site for proteins called integrins, which are located in the cell membrane.

is-the-laminin-cross-evidence-for-a-creator

Figure: The structure of laminin. Image credit: Wikipedia

Laminin’s architecture and binding sites make this protein ideally suited to interact with other proteins and polysaccharides to form a network called the basal reticulum and to anchor cells to its biochemical scaffolding. The basal reticulum helps hold cells together to form tissues and, in turn, helps cement that tissue to connective tissues.

The cross-like shape of laminin and the role it plays in holding tissues together has prompted the claim that this biomolecule provides scientific support for passages such as Colossians 1:15–17 and shows how the God of the Bible must have made humans and continues to sustain them.

I would caution Christians against using this “argument.” I see a number of problems with it. (And so do many skeptics.)

First, the cross shape is a simple structure found throughout nature. So, it’s probably not a good idea to attach too much significance to laminin’s shape. The t configuration makes laminin ideally suited to connect proteins to each other and cells to the basal reticulum. This is undoubtedly the reason for its structure.

Secondly, the cross shape of laminin is an idealized illustration of the molecule. Portraying complex biomolecules in simplified ways is a common practice among biochemists. Depicting laminin in this extended form helps scientists visualize and catalog the binding sites along its four arms. This configuration should not be interpreted to represent its actual shape in biological systems. In the basal reticulum, laminin adopts all sorts of shapes that bear no resemblance to a cross. In fact, it’s much more common to observe laminin in a swastika configuration than in a cross-like one. Even electron micrographs of isolated laminin molecules that appear cross-shaped may be misleading. Their shape is likely an artifact of sample preparation. I have seen other electron micrographs that show laminin adopting a variety of twisted shapes that, again, bear no resemblance to a cross.

Finally, laminin is not the only molecule “holding things together.” A number of other proteins and polysaccharides are also indispensable components of the basal reticulum. None of these molecules is cross-shaped.

As I argue in my book, The Cell’s Design, the structure and operation of biochemical systems provide some of the most potent support for a Creator’s role in fabricating living systems. Instead of pointing to superficial features of biomolecules such as the “cross-shaped” architecture of laminin, there are many more substantive ways to use biochemistry to argue for the necessity of a Creator and for the value he places on human life. As a case in point, the salient characteristics of biochemical systems identically match those features we would recognize immediately as evidence for the work of a human design engineer. The close similarity between biochemical systems and the devices produced by human designers logically compels this conclusion: life’s most fundamental processes and structures stem from the work of an intelligent, intentional Agent.

When Christians invest the effort to construct a careful case for the Creator, skeptics and seekers find it difficult to deny the powerful evidence from biochemistry and other areas of science for God’s existence.

Resources:

Endnotes

  1. This article was originally published in the April 1, 2009, edition of New Reasons to Believe.
Reprinted with permission by the author
Original article at:
https://www.reasons.org/explore/blogs/the-cells-design/read/the-cells-design/2018/01/31/is-the-laminin-cross-evidence-for-a-creator

The Remarkable Scientific Accuracy of Psalm 139

theremarkablescientificaccuracy

BY FAZALE RANA – MARCH 1, 2017

For you created my inmost being; you knit me together in my mother’s womb. I praise you because I am fearfully and wonderfully made; your works are wonderful, I know that full well.

– Psalm 139:13–14

Psalm 139 has been on my mind quite a bit lately. Maybe it’s because I have recently written a couple of articles about the incredible design of human pregnancy—design that highlights just how fearfully and wonderfully human beings are made.

Posting these articles to my Facebook page prompted one of my Facebook friends, Eric, to ask a thought-provoking question:

“Psalm 139:13 says God ‘knit’ us in our mother’s womb. This sounds a lot to me like DNA replication. Is this reading science into the text?”

Given the importance of DNA replication to embryological development and the specific features of the replication process, I understand why Eric would want to make that comparison. While I think that there are passages in Scripture that anticipate (even predict) scientific discoveries, I don’t see Psalm 139 referring to DNA replication. (By the way, I appreciate Eric’s caution about reading science into the text.)

Having said that, I do think that the description of God knitting each one of us together in our mother’s womb is an apt analogy for the process of embryological development at the cellular level, because both knitting and development are predicated on forethought and rely on a special type of information—qualities that reflect the activity of an Intelligent Agent.

An Overview of Embryo Growth and Development

Embryological development begins the moment the egg cell (oocyte) becomes fertilized by a sperm cell, yielding a zygote. In turn, the zygote undergoes several rounds of cell division (referred to as cleavage) to produce a berry-like structure, called a morula. All of this happens by the third or fourth day of pregnancy.

Over the next couple of days, the morula undergoes changes that characterize the process of embryogenesis. In addition to undergoing growth and division, cells in the morula begin to migrate relative to one another to form a structure with a hollow sphere called a blastula. Within the sphere is a clump of cells called the inner cell mass.

scientific-accuracy-of-psalm-139-1The next stage in embryogenesis sees the inner cell mass transform into a stack of three cellular layers (called germ layers) through cell growth, division, and migration. At this stage, the embryo is referred to as the gastrula.

The specific cell layers of the gastrula are labeled: (1) the ectoderm, (2) the mesoderm, and (3) the endoderm. Each of these cell layers is fated to develop into different organ systems in the body. The ectoderm forms the nervous system and the epidermis of the skin. The mesoderm forms muscles, the skeletal system, blood and blood vessels, and the dermis of the skin. The endoderm forms the linings of the digestive and respiratory systems, and organs that comprise the digestive system, such as the liver and pancreas.

After gastrulation, the next stage involves organ formation. Organogenesis begins in each of the individual cell layers and involves the careful orchestration of several processes, including cell growth, cell division, cell-to-cell communication, cell migration, differentiation of cells into specialized types, secretion of extracellular materials, and even cell death (which is necessary to sculpt the tissues and organs).

These cellular processes are directed by the complex interplay between gene networks within the cells (with genes turning on and off) and chemical gradients produced from materials secreted by the cells. Some scientists think that bioelectric fields generated by the cells of the developing embryo also direct embryogenesis.1 The patterns formed by the chemical gradients and bioelectric fields direct the movements, differentiation, and behavior of the embryonic cells. Still, the scientific community is unclear what ultimately determines the chemical gradient and bioelectric field patterns. To put it another way, while scientists are beginning to understand the role that chemical gradients and bioelectric fields play in development, they have no idea where the instructions ultimately come from that direct individual cells in the developing embryo to contribute to and, in turn, respond to the chemical gradients and bioelectric fields that guide embryonic development.

Perhaps the problem has to do with the fact that the scientific community views embryogenesis from a strictly materialistic/naturalistic framework. But what if embryo development were to be examined from a creation model vantage point?

Embryological Development and the Case for Intelligent Design

Remarkably, the instructions for embryogenesis appear to be instantiated in the cells that make up the developing embryo. From a creation model perspective, these instructions must come from a Mind, because instructions are a form of information (specifically, algorithmic information) and common experience teaches that algorithms emanate from a Mind. Toward that end, origin-of-life researchers Paul Davies and Sara Walker recently acknowledged that currently there is no evolutionary explanation for algorithmic information instantiated in living matter.2

Another reason to think that embryological development stems from a Creator’s involvement relates to the foresight required to formulate the instructions so that they lead to the desired outcome for embryogenesis. Evolutionary processes do not have foresight. Foresight also reflects the work of a Mind. If these instructions are flawed for even a single cell during the early stages of development, the consequences would be disastrous, with the offspring turning into a “developmental monster,” compromised in its capacity to survive and reproduce. To put it differently, it is hard to envision how evolutionary processes could generate the algorithmic information needed for embryogenesis through trial and error, without the benefit of foresight.

To help make this point clear, consider the analogy between embryogenesis and the routine performed by cheerleaders during a competition.3 Throughout the performance, each cheerleader has a specific set of movements and actions she will perform. Before the performance, her coach instructs her in exactly what to do, when to do it, and where to do it on the mat. Her individual movements and actions are different from every other team member, but when performed in conjunction with her teammates (who have their own set of instructions), the outcome can be dazzling. All this is possible, because the coach choreographed the routine ahead of the performance, with an eye toward how the routine would unfold at different stages of the performance. That is, the routine was intelligently designed with the benefit of the coach’s foresight and that design was implemented through the instructions given to each girl. If not for the coach’s foresight and instructions, chaos would ensue during the performance as each girl did whatever seemed right to her at the time.

In like manner, during embryogenesis, each cell harbors a set of instructions that tell it: (1) what chemicals and how much of these materials to secrete to establish the gradients needed to guide development, (2) when to reproduce, (3) when and where to migrate, (4) when to differentiate, (5) when and what materials to secrete to form the extracellular matrix, and (6) when to die. In a sense, the cells are like cheerleaders. And the process of embryological development is akin to the choreography of a cheer routine. The only difference: the choreography of embryological development is much more complex, elaborate, and sophisticated.

As with cheerleading, someone must give the cells instructions ahead of time with the end goal of embryological development in view. And I see that “someone” as the Creator.

Knit Together in the Womb

I also find “knitting” an apt metaphor for embryological development. My mother is an avid knitter. And whenever I watch her knit, I can’t help but recognize the similarities to a cheer routine. Knitting consists of a choreography, of sorts. Someone who knits a sweater has a final product in mind before she even picks up needles and chooses the yarn. Making use of a set of instructions—algorithmic information—that tells her which yarn to use and which knitting strokes to employ, she performs a series of actions that will eventually lead to the final product, though what that product is may not be evident at the instant those actions are performed, at least to the uninitiated.

In this context, it is intriguing that David, the author of Psalm 139, would describe embryological development as a knitting process. David writes,

“Your eyes saw my unformed body; all the days ordained for me were written in your book before one of them came to be.”

– Psalm 139:16

In light of what we have learned about embryological development, I find the scientific prescience of Psalm 139 remarkable.

Resources

Endnotes

  1. Michael Levin, “Bioelectric Mechanisms in Regeneration: Unique Aspects and Future Perspectives,” Seminars in Cell and Developmental Biology 20 (July 2009): 543–56, doi:10.1016/j.semcdb.2009.04.013.
  2. Sara Imari Walker and Paul C. W. Davies, “The Algorithmic Origins of Life,” Journal of the Royal Society Interface 10 (February 2013): doi:10.1098/rsif.2012.0869.
  3. One of my daughters was a competitive cheerleader. Before she started, if you would have asked me, “Are cheerleaders athletes?” I would have laughed. But after spending several years around cheerleaders, I am truly impressed with their athleticism. In short, cheerleaders are amazing athletes.
Reprinted with permission by the author
Original article at:
https://www.reasons.org/explore/blogs/the-cells-design/read/the-cells-design/2017/03/01/the-remarkable-scientific-accuracy-of-psalm-139