DNA: Digitally Designed

dnadigitallydesigned
BY FAZALE RANA – MAY 24, 2017

We live in uncertain and frightening times.

There seems to be no end to the serious risks confronting humanity. In fact, in 2014, USA Today published an article identifying the 10 greatest threats facing our world:

  • Fiscal crises in key economies
  • Structurally high unemployment/underemployment
  • Water crises
  • Severe income disparity
  • Failure to climate change mitigation and adaptation
  • Greater incidence of extreme weather events (e.g., floods, storms, fires)
  • Global governance failure
  • Food crises
  • Failure of a major financial mechanism/institution
  • Profound political and social instability

If this list isn’t bad enough, another crisis looms in our near future: a data storage crisis.

Thanks to the huge volume of scientific data generated by disciplines such as genomics and the explosion of YouTube videos, 44 trillion gigabytes of digital data currently exist in the world. To put this in context, each person in a worldwide population of 10 billion people would have to store over 6,000 CDs to house this data. Estimates are that if we keep generating data at this pace, we will run out of high-quality silicon needed to make data storage devices by 2040.1

Compounding this problem are the limitations of current data storage technology. Because of degradative processes, hard disks have a lifetime of about 3 years and magnetic tapes about 10 years. These storage systems must be kept in controlled environments—which makes data storage an expensive proposition.

Digital Data Storage in DNA

Because of DNA’s role as a biochemical data storage system (in which the data is digitized), researchers are exploring the use of this biomolecule as the next-generation digital data storage technology. As proof of principle, a team of researchers from Harvard University headed up by George Church coded the entire contents of a 54,000-word book (including 11 JPEG images) into DNA fragments.

The researchers chose to encode the book’s contents into small DNA fragments—devoting roughly two-thirds of the sequence for data and the remainder for information that can be used to locate the content within the entire data block. In this sense, their approach is analogous to using page numbers to order and locate the contents of a book.

Since then, researchers have encoded computer programs, operating systems, and even movies into DNA.

Because DNA is so highly optimized to store information, it is an ideal data storage medium. (For details regarding the optimal nature of DNA’s structure, see The Cell’s Design.) Researchers think that DNA has the capacity to store data near the theoretical maximum. About one-half pound of DNA can store all the data that exists in the world today.

Limitations of DNA Data Storage

Despite its promises, there are some significant technical hurdles to overcome before DNA can serve as a data storage system. Cost and time are two limitations. It is expensive and time-consuming to produce and read the synthetic DNA used to store information. As technology advances, the cost and time requirements associated with DNA data storage will likely improve. Still, because of these limitations, most technologists think that the best use of DNA will be for archival storage of data.

Another concern is the long-term stability of DNA. Over time, DNA degrades. Researchers believe that redundancy may be one way around this problem. By encoding the same data in multiple pieces of DNA, data lost because of DNA degradation can be recovered.

The processes of making and reading synthetic DNA also suffer from error. Current technology has an error rate of 1 in 100. Recently, researchers from Columbia University achieved a breakthrough that allows them to elegantly address loss of information from DNA due to degradation or miscoding that takes place when DNA is made and read. These researchers successfully applied techniques used for “noisy communication” operations to DNA data storage.2

With these types of advances, the prospects of using DNA to store digital data may soon become a reality. And unlike other data storage technologies, DNA will never become obsolete.

Biomimetics and Bioinspiration

The use of biological designs to drive technological advance is one of the most exciting areas in engineering. This area of study—called biomimetics and bioinspiration—presents us with new reasons to believe that life stems from a Creator. As the names imply, biomimetics involves direct copying (or mimicry) of designs from biology, whereas bioinspiration relies on insights from biology to guide the engineering enterprise. DNA’s capacity to inspire engineering efforts to develop new data storage technology highlights this biomolecule’s elegant, sophisticated design and, at the same time, raises a troubling question for the evolutionary paradigm.

The Converse Watchmaker Argument

Biomimetics and bioinspiration pave the way for a new type of design argument I dub the converse Watchmaker argument: If biological designs are the work of a Creator, then these systems should be so well-designed that they can serve as engineering models and otherwise inspire the development of new technologies.

At some level, I find the converse Watchmaker argument more compelling than the classical Watchmaker analogy. It is remarkable to me that biological designs can inspire engineering efforts.

It is even more astounding to think that biomimetics and bioinspiration programs could be so successful if biological systems were truly generated by an unguided, historically contingent process, as evolutionary biologists claim.

Biomimetics and Bioinspiration: The Challenge to the Evolutionary Paradigm

To appreciate why work in biomimetics and bioinspiration challenge the evolutionary paradigm, we need to discuss the nature of the evolutionary process.

Evolutionary biologists view biological systems as the outworking of unguided, historically contingent processes that co-opt preexisting designs to cobble together new systems. Once these designs are in place, evolutionary mechanisms can optimize them, but still, these systems remain—in essence—kludges.

Most evolutionary biologists are quick to emphasize that evolutionary processes and pathways seldom yield perfect designs. Instead, most biological designs are flawed in some way. To be certain, most biologists would concede that natural selection has produced biological designs that are well-adapted, but they would maintain that biological systems are not well-designed. Why? Because evolutionary processes do not produce biological systems from scratch, but from preexisting systems that are co-opted through a process dubbed exaptation and then modified by natural selection to produce new designs. Once formed, these new structures can be fine-tuned and optimized through natural selection to produce well-adapted designs, but not well-designed systems.

If biological systems are, in effect, kludged together, why would engineers and technologists turn to them for inspiration? If produced by evolutionary processes—even if these processes operated over the course of millions of years—biological systems should make unreliable muses for technology development. Does it make sense for engineers to rely on biological systems—historically contingent and exapted in their origin—to solve problems and inspire new technologies, much less build an entire subdiscipline of engineering around mimicking biological designs?

Using biological designs to guide engineering efforts seems to be fundamentally incompatible with an evolutionary explanation for life’s origin and history. On the other hand, biomimetics and bioinspiration naturally flow out of an intelligent design/creation model approach to biology. Using biological systems to inspire engineering makes better sense if the designs in nature arise from a Mind.

Resources

The Cell’s Design: How Chemistry Reveals the Creator’s Artistry by Fazale Rana (book)
iDNA: The Next Generation of iPods?” by Fazale Rana (article)
Harvard Scientists Write the Book on Intelligent Design—in DNA” by Fazale Rana (article)
Digital and Analog Information Housed in DNA” by Fazale Rana (article)
Engineer’s Muse: The Design of Biochemical Systems” by Fazale Rana (article)

Endnotes

  1. Andy Extance, “How DNA Could Store All the World’s Data,” Nature 537 (September 2, 2016): 22–24, doi:10.1038/537022a.
  2. Yaniv Erlich and Dina Zielinski, “DNA Fountain Enables a Robust and Efficient Storage Architecture,” Science355 (March 3, 2017): 950–54, doi:10.1126/science.aaj2038.
Reprinted with permission by the author
Original article at:
https://www.reasons.org/explore/blogs/the-cells-design/read/the-cells-design/2017/05/24/dna-digitally-designed

Earwax Discovery Gives New Hearing to the Case for Intelligent Design

earwaxdiscoverygivesnew

BY FAZALE RANA – FEBRUARY 22, 2017

If you are like most people, you probably haven’t devoted much thought to earwax, unless it relates to the safest way to clean it out of your ears.

But earwax is worth thinking about, because it is a remarkable substance with extraordinary properties, as recent work by engineers from Georgia Institute of Technology (GIT) attests.1 In fact, the GIT researchers think that they can use their new insight about earwax to develop specialized filters for electronic devices that must perform in dusty environments.

By using earwax as an inspiration for new technology, these researchers have unwittingly provided more evidence for intelligent design, while at the same time raising a powerful challenge to the evolutionary explanation for the history and the design of life.

What Is Earwax?

This substance is an eclectic mixture of fatty acids, fatty alcohols, cholesterol, and squalene formed from secretions of the sebaceous and the ceruminous glands that line the outer portion of the ear canal. Earwax also consists of shed epithelial cells and hair.

Earwax is produced by all mammals, including humans. Two different types of earwax are found in humans, referred to as wet and dry. Honey brown in color, wet earwax contains a higher concentration of lipids and pigments than dry earwax. A single genetic change converts wet earwax (which is the genetically dominant form) into dry earwax (the genetically recessive form), which is gray and flaky.

The type of earwax a person has reflects their ancestry, with people of African and European descent having the wet variety and Asian and Native American people groups having dry earwax. Anthropologists have noted a correlation between earwax type and body odor. People with wet earwax tend to be more odiferous than people with dry earwax. Anthropologists think this correlation reflects sweat production levels, with people with wet earwax sweating more profusely than people with dry earwax. Presumably, the mutation which alters the color and consistency of the earwax also impacts sweat production. Anthropologists think that reduced sweating may have offered an advantage to Asian peoples and Native Americans, and consequently, dry earwax became fixed within these populations.

What Is the Function of Earwax?

Earwax serves several functions. One is protecting the inner ear from water, dust particles, and microorganisms. Even though earwax is a solid substance, it allows air to flow through it to the inner ear. Yet, the high fat content of earwax makes it an ideal water repellent, keeping water away from the inner ear. The hair fibers in earwax serve a useful function, forming a meshwork that traps dust particles. And the acidic pH of earwax and the lysosomes from the cellular debris associated with it impart this waxy secretion with antibacterial and antifungal properties.

The fatty materials associated with earwax also help lubricate the skin of the inner ear canal as the earwax moves toward the outer ear. Earwax motion occurs via a conveyor action set up, in part, by the migration of epithelial cells toward the outer ear. These migrating cells, which move at about the same rate as fingernails grow, carry the earwax along with them. Jaw motion also helps with the earwax movement.

By comparing earwax from several animals and by video recording earwax in human ear canals, the GIT researchers discovered that earwax has special properties that make it a non-Newtonian fluid. It is solid at rest, but flows when under pressure. Apparently, the pressure exerted on the earwax from jaw movements helps it to flow toward the outer ear. This movement serves as a cleaning mechanism, carrying the debris picked up by the earwax toward the outer ear. Interestingly, the particles picked up by the earwax alter its consistency, from a waxy material, to a flaky solid that readily crumbles, making it easier to clear the outer ear, while making room for newer, cleaner earwax.

New Technology Inspired by Earwax

The GIT engineers recognized that, based on its physical properties, earwax could serve as an inspiration for the design of new types of filters that could protect electronics from water and dusty environments. With a bit of imagination, it is possible to conceive of ways to take advantage of shear-thinning behavior to design filters that could be readily replaced with cleaner ones, once they have trapped their limit of dust particles.

Biomimetics, Bioinspiration, and the Case for Intelligent Design

It has become rather commonplace for engineers to employ insights from biology to solve engineering problems and to inspire the invention of new technologies. This activity falls under the domain of two relatively new and exciting areas of engineering known as biomimetics and bioinspiration. As the names imply, biomimetics involves direct copying (or mimicry) of designs from biology, whereas bioinspiration relies on insights from biology to guide the engineering enterprise.

From my perspective, the use of biological designs to guide engineering efforts seems fundamentally at odds with evolutionary theory. Generally, evolutionary biologists view biological systems as the products of an unguided, historically contingent process that co-opts preexisting systems to cobble together new ones. Evolutionary mechanisms can optimize these systems, but they are still kludges, in essence.

Given the unguided nature of evolutionary mechanisms, does it make sense for engineers to rely on biological systems to solve problems and inspire new technologies? Is it in alignment with evolutionary beliefs to build an entire subdiscipline of engineering upon mimicking biological designs? I would argue that these engineering subdisciplines do not fit with the evolutionary paradigm. On the other hand, biomimetics and bioinspiration naturally flow out of a creation model approach to biology. Using designs in nature to inspire engineering only makes sense if these designs arose from an intelligent Mind.

Resources

Engineers’ Muse: The Design of Biochemical Systems” by Fazale Rana (article)
Beetles Inspire an Engineering Breakthrough” by Fazale Rana (article)

Endnotes

  1. Society for Integrative and Comparative Biology, “The Technological Potential of Earwax,” Science News(blog), ScienceDaily, January 6, 2017, www.sciencedaily.com/releases/2017/01/17016092506.htm.
Reprinted with permission by the author
Original article at:
https://www.reasons.org/explore/blogs/the-cells-design/read/the-cells-design/2017/02/22/earwax-discovery-gives-new-hearing-to-the-case-for-intelligent-design