Sophisticated Cave Art Evinces the Image of God



It’s a new trend in art. Museums and galleries all over the world are exploring the use of sounds, smells, and lighting to enhance the viewer’s experience as they interact with pieces of art. The Tate Museum in London is one institution pioneering this innovative approach to experiencing artwork. For example, on display recently at Tate’s Sensorium was Irish artist Francis Bacon’s Figure in a Landscape, a piece that depicts a gray human figure on a bench. Visitors to the Sensorium put on headphones while they view this painting, and they hear sounds of a busy city. Added to the visual and auditory experiences are the bitter burnt smell of chocolate and the sweet aroma of oranges that engulf the viewer. This multisensory experience is meant to depict a lonely, brooding figure lost in the never-ending activities of a city, with the contrasting aromas simultaneously communicating the harshness and warmth of life in an urban setting.

It goes without saying that designing multisensory experiences like the ones on display at the Sensorium requires expertise in sound, taste, and lighting. This expertise makes recent discoveries on ancient cave and rock art found throughout the world all the more remarkable. As it turns out, the cave and rock art found in Europe, Asia, and Africa are multisensory displays.1 The sophistication of this early art highlights the ingenuity of the first artists—modern humans, who were people just like us.

Cave Art

Though many people have the perception that cave and rock art is crude and simplistic, in fact, it is remarkably sophisticated. For example, the Chauvet-Pont-d’Arc Cave in southern France houses cave art that dates (using carbon-14 measurements) to two periods: 28,000 to 31,000 years ago and 33,500 to 37,000 years ago. These cave sites house realistic depictions of hundreds of animals including herbivores such as horses, cattle, and mammoths. The art also depicts rhinos and carnivores such as cave lions, panthers, bears, and hyenas. The site also contains hand stencils and geometric shapes, such as lines and dots.

The Chauvet Cave human artists painted the animal figures on areas of the cave walls that they polished to make smooth and lighter in color. They also made incisions and etchings around the outline of the painted figures to create a three-dimensional quality to the art and to give the figures a sense of movement.

Multisensory Cave Art

One of the most intriguing aspects of cave art is its location in caves. Oftentimes, the animal figures are depicted deep within the cave’s interior, at unusual locations for the placement of cave paintings.

Recently, archaeologists have offered an explanation for the location of the cave art. It appears as if the artists made use of the caves’ acoustical properties to create a multisensory experience. To say it another way, the cave art is depicted in areas of the caves where the sounds in that area of the cave reinforce the cave paintings. For example, hoofed animals are often painted in areas of the caves where the echoes and reverberations make percussive sounds like those made by thundering hooves when these animals are running. Carnivores are often depicted in areas of the caves that are unusually quiet.

San Rock Art

Recently, researchers have discovered that the rock art produced by the San (indigenous hunter-gatherer people from Southern Africa), the oldest of which dates to about 70,000 years ago, also provides viewers a multisensory experience.2 Archaeologists believe that the art depicted on the rocks reflects the existence of a spirit world beneath the surface. These rock paintings are often created in areas where echoes can be heard, presumably reflecting the activities of the spirit world.

Who Made the Cave and Rock Art?

Clearly, the first human artists were sophisticated. But, when did this sophisticated behavior emerge? The discovery of art in Europe and Asia indicates that the first humans who made their way out of Africa as they migrated around the world carried with them the capacity for art. To put it another way, the capacity for art did not emerge in humans after they reached Europe, but instead was an intrinsic part of human nature before we began to make our way around the world.

The discovery of symbolic artifacts as old as 80,000 years in age in caves in South Africa(artistic expression is a manifestation of the capacity to represent the world with symbols) and the dating of the oldest San rock art at 70,000 years in age adds support to this view.

Linguist Shigeru Miyagawa points out that genetic evidence indicates that the San separated from the rest of humanity around 125,000 years ago. While the San remained in Africa, the group of humans who separated from the San and made their way into Asia and Europe came from a separate branch of humanity. And yet, the art produced by the San displays the same multisensory character as the art found in Europe and Asia. To say it another way, the rock art of the San and the cave art in Europe and Asia display unifying characteristics. These unifying features indicate that the art share the same point of origin. Given that the data seems to indicate that humanity’s origin is about 150,000 years ago, it appears that the origin of art coincides closely to the time that modern humans appear in the fossil record.3

Cave Art and Rock Evince the Biblical View of Human Nature

The sophistication of the earliest art highlights the exceptional nature of the first artists—modern humans, people just like you and me. The capacity to produce art reflects the capacity for symbolism—a quality that appears to be unique to human beings, a quality contributing to our advanced cognitive abilities, and a quality that contributes to our exceptional nature. As a Christian, I view symbolism (and artistic expression) as one of the facets of God’s image. And, as such, I would assert that the latest insights on cave art provide scientific credibility for the biblical view of human nature.



  1. Shigeru Miyagawa, Cora Lesure, and Vitor A. Nóbrega, “Cross-Modality Information Transfer: A Hypothesis about the Relationship among Prehistoric Cave Paintings, Symbolic Thinking, and the Emergence of Language,” Frontiers in Psychology 9 (February 20, 2018): 115, doi:10.3389/fpsyg.2018.00115.
  2. Francis Thackery, “Eland, Hunters and Concepts of ‘Symapthetic Control’: Expressed in Southern African Rock Art,’ Cambridge Archaeological Journal 15 (2005): 27–35, doi:10.1017/S0959774305000028.
  3. Miyagawa et al., “Cross-Modality Information Transfer,” 115.
Reprinted with permission by the author
Original article at:

A Genetically Engineered Case for a Creator



Since the 1960’s, the drug noscapine has been used in many parts of the world as a non-narcotic cough-suppressant. Recently, biomedical researchers have learned that that noscapine (and chemically-modified derivatives of this drug) has potential as a cancer drug. And that is nothing to sneeze at.

The use of the drug for nearly a half century as a cough suppressant means the safety of noscapine has already been established. In fact, pre-clinical studies indicate that noscapine has fewer side effects than many anti-cancer drugs.

Unfortunately, the source of noscapine is opium poppies. Even though tens of tons of noscapine is isolated each year from thousands of tons of raw plant material, biochemical engineers question if the agricultural supply line can meet the extra demand if noscapine finds use as an anti-cancer agent. Estimates indicate that the amounts of noscapine needed for cancer treatments would be about ten times the amount currently produced for its use as a cough suppressant. Complicating matters are the extensive regulations and bureaucratic red tape associated with growing poppy plants and extracting chemical materials from them.

It takes about 1 year to grow mature poppy plants. And once grown, the process of isolating pure noscapine is time intensive and expensive. This drug has to be separated from narcotics and other chemicals found in the opium extract, and then purified. Because poppy plants are an agricultural product, considerable batch-to-batch variation occurs for noscapine supplies.

Chemists have developed synthetic routes to make noscapine. But, these chemical routes are too complex and costly to scale up for large scale production of this drug.

But, researchers from Stanford University believe that they have come up with a solution to the noscapine supply problem. They have genetically engineered brewer’s yeast to produce large quantities of noscapine.1 This work demonstrates the power of synthetic biology to solve some of the world’s most pressing problems. But, the importance of this work extends beyond science and technology. This work has significant theological implications, as well. This work provides empirical proof that intelligent agency is necessary for the large-scale transformation of life forms.

Genetically Engineered Yeast

To modify brewer’s yeast to produce noscapine, the Stanford University research team had to: 1) first, construct a biosynthetic pathway that would convert simple carbon- and nitrogen-containing compounds into noscapine, and then, 2) add genes to the yeast’s genome that would produce the enzymes needed to carry out this transformation. Specifically, they added 25 genes from plants, bacteria, and mammals to this microbe’s genome. On top of the gene additions, they also had to modify 6 of genes in the yeast’s genome.

Biosynthetic pathways that yield complex molecules such as noscapine can be rather elaborate. Enzymes form these pathways. These protein machines bind molecules and convert them into new materials by facilitating chemical reactions. In biosynthetic pathways the starting molecule is modified by the first enzyme in the pathway and after its transformation is shuttled to the second enzyme in the pathway. This process continues until the original molecule is converted step-by-step into the final product.

Designing a biosynthetic route from scratch would be nearly impossible. Fortunately, the team from Stanford took advantage of previous work done by other life scientists who have characterized the metabolic reactions that produce noscapine in opium poppies. These pioneering researchers have identified a cluster of 10 genes that encode enzymes that work collaboratively to convert the compound scoulerine to noscapine.

The Stanford University researchers used these 10 poppy genes as the basis for the noscapine biosynthetic route they designed. They expanded this biosynthetic pathway by using genes that encode for the enzymes that convert glucose into reticuline. This compound is converted into scoulerine by the berberine bridge enzyme. They discovered that the conversion of glucose to reticuline is tricky, because one of the intermediary compounds in the pathway is dopamine. Life scientists don’t have a good understanding how this compound is made in poppies, so they used the genes that encode the enzymes to make dopamine from rats.

They discovered that when they added all of these genes into the yeast, these modified microbes produced noscapine, but at very low levels. At this point, the research team carried out a series of steps to optimize noscapine production, which included:

  • Genetically altering some of the enzymes in the noscapine biosynthetic pathway to improve their efficiency
  • Manipulating other metabolic pathways (by altering the expression of the genes that encode enzymes in these metabolic routes) to divert the maximum amounts of metabolic intermediates into the newly constructed noscapine pathway
  • Varying the media used to grow the yeast

These steps led to an 18,000-fold improvement in noscapine production.

With accomplishment, the scientific community is one step closer to have a commercially-viable source of noscapine.

Synthetic Biology and the Case for a Creator

Without question, the engineering of brewer’s yeast to produce noscapine is science at its very best. The level of ingenuity displayed by the research team from Stanford University is something to behold. And, it is for this reason, I maintain that this accomplishment (along with other work in synthetic biology) provides empirical evidence that a Creator must play a role in the origin, history, and design of life.

In short, these researchers demonstrated that intelligent agency is required to originate new metabolic capabilities in an organism. This work also illustrates the level of ingenuity required to optimize a metabolic pathway once it is in place.

Relying on hundreds of years of scientific knowledge, these researchers rationally designed the novel noscapine metabolic pathway. Then, they developed an elaborate experimental strategy to introduce this pathway in yeast. And then, it took highly educated and skilled molecular biologists to go in the lab to carry out the experimental strategy, under highly controlled conditions, using equipment that itself was designed. And, afterwards, the researchers employed rational design strategies to optimize the noscapine production.

Given the amount of insight, ingenuity, and skill it took to engineer and optimize the metabolic pathway for noscapine in yeast, is it reasonable to think that unguided, undirected, historically contingent evolutionary processes produced life’s metabolic processes?


Creating Life in the Lab: How New Discoveries in Synthetic Biology Make a Case for a Creatorby Fazale Rana (book)

New Discovery Fuels the Case for Intelligent Design” by Fazale Rana (article)

Fattening Up the Case for Intelligent Design” by Fazale Rana (article)

A Case for Intelligent Design, Part 1” by Fazale Rana (article)

A Case for Intelligent Design, Part 2” by Fazale Rana (article)

A Case for Intelligent Design, Part 3” by Fazale Rana (article)

A Case for Intelligent Design, Part 4” by Fazale Rana (article)

The Blueprint for an Artificial Cell” by Fazale Rana (article)

Do Self-Replicating Protocells Undermine the Evolutionary Theory” by Fazale Rana (article)

A Theology for Synthetic Biology, Part 1” by Fazale Rana (article)

A Theology for Synthetic Biology, Part 2” by Fazale Rana (article)


  1. Yanran Li et al., “Complete Biosynthesis of Noscapine and Halogenated Alkaloids in Yeast,” Proceedings of the National Academy of Sciences, USA(2018), doi: 10.1073/pnas.1721469115.
Reprinted with permission by the author
Original article at: