Does the Recovery of Oils from a Fossilized Bird Evince a Young Earth?

doestherecoveryofoils

BY FAZALE RANA – DECEMBER 20, 2017

Now the Berean Jews were of more noble character than those in Thessalonica, for they received the message with great eagerness and examined the Scriptures every day to see if what Paul said was true.

–Acts 17:11

Is there scientific evidence that the earth is only 6,000 years old?

In spite of the valiant efforts of young-earth creationists (YECs), I have yet to come across any compelling scientific arguments that the earth is only a few thousand years old. At least not until I learned about the numerous discoveries of soft-tissue remnants associated with fossils that date to several hundred million years in age, in some instances. (For a detailed survey of the soft tissues recovered from the fossil record, check out my book, Dinosaur Blood and the Age of the Earth.) These discoveries give me some pause for thought about the age-of-the-earth measurements.

These types of discoveries generate a lot of excitement among paleontologists. Having access to soft-tissue materials provides the scientific community with inspiring new insights into the biology of these ancient creatures.

They also create a lot of excitement for YECs, because the findings suggest to them that the geologists’ dating methods are unreliable. Before these discoveries, very few scientists would have ever thought that soft-tissue materials could survive in the geological layers for thousands—let alone hundreds of millions—of years because of unrelenting decomposition processes. And yet, the number of soft-tissue fossil discoveries continues to mount. For example, investigators from the UK, the US, and Germany recently reported on the recovery of endogenous oils from the fossilized uropygial gland of a bird specimen that dates to 48 million years in age.I will take a closer look at what they found after a bit of explanation to show why it is critical to understand such a discovery.

For YECs, the isolation of soft-tissue materials from fossils indicates that the fossils cannot be millions of years old but, at best, only a few thousand years old—and most likely deposited by a catastrophic worldwide flood. They reason that if the fossils are only a few thousand years old, then the methods used to age-date the fossils must be faulty. That being the case, then the same methods used to date the earth, too, must be flawed.

As an old-earth creationist, I must admit the discovery of soft-tissue materials associated with fossils represents one of the most interesting arguments for a young earth I’ve encountered. On the surface, the argument seems reasonable. Perhaps it isn’t surprising that many YEC organizations (such as Answers in Genesis, Creation Ministries International, and the Institute for Creation Research) have elevated the existence of soft tissue materials in the fossil record to one of their central arguments for a young earth. I observe many well-meaning Christians following suit, using this same argument in their efforts to convince seekers and skeptics about the scientific reliability of the Genesis 1 creation account. Unfortunately, most people who are scientifically minded fail to find this argument persuasive because of the overwhelming amount of scientific evidence for the reliability of radiometric dating. And as a result, skeptics are often driven further away from the Christian faith.

When using scientific discoveries to demonstrate God’s existence and to defend the reliability of the biblical creation accounts, it is critical to adopt a posture like that of the Bereans. It is incumbent on all of us to investigate or “examine” on our own to ensure the arguments we use are sound.

That’s why I wrote Dinosaur Blood and the Age of the Earth. In this book, I make every effort to take the soft-tissue argument seriously. But, following the Bereans’ example, I thoroughly examine each premise of their argument to see if it holds up to scrutiny, including their central claim: soft-tissue materials cannot persist in fossils that are millions of years old.

Though admittedly counterintuitive, after thorough investigation into this claim, I have come to believe that soft-tissue remnants can survive in the fossil record. To illustrate how this survival is possible, let’s use the recently discovered 48-million-year preening oil isolated, fossilized uropygial gland as a case study.

Discovery of Preening Oil in a 48-Million-Year-Old Fossilized Gland

The 48-million-year-old fossil bird specimen that possessed uropygial gland oils was recovered from the Messel Pit. Located in Darmstadt, Germany, this UNESCO World Heritage site has yielded a number of important vertebrate fossils throughout its history and still serves as a source of exciting new fossil discoveries today.

While carefully examining this bird specimen (which still remains unclassified), the paleontologists noted the outline of the uropygial gland at the base of the tail region. To confirm this interpretation, the researchers attempted to extract remnants of preening oil from this putative gland. Motivated by previous soft-tissue finds and the discovery of lipids (a class of biomolecules that include oils) in other ancient geological deposits, the research team removed milligram amounts of the fossilized uropygial gland from the specimen and extracted material from the sample. Afterward, they subjected the extracts to chemical analysis, relying on a technique known as pyrolysis-gas chromatography-mass spectrometry. Analysis with this technique begins with a heating step that decomposes the analytes into small molecular fragments that, in turn, are separated by gas chromatography and then analyzed by mass spectrometry. This technique produces profiles of molecular fragments that serve as a fingerprint, helping scientists determine the identity of compounds in the sample.

The research team detected C-8 to C-30 n-alkanes, n-alkenes, and alkylbenzenes in the uropygial gland extracted—as expected if the fossil contained remnants for preening oil. The profiles of the fossilized uropygial gland extracts differed from the profiles of extracts taken from shales that make up the geological layer that originally housed the fossil specimen. This result indicates that the uropygial gland extracts are not due to contamination from the surrounding geological layers. When the researchers compared the extracts of the fossilized glands to extracts of uropygial glands of extant birds (such as the common blackbird, the ringed teal, and the middle spotted woodpecker), they noted a difference in the profiles. This difference most likely reflects chemical alteration of the original preening oil during the fossilization process.

How the Preening Oil Was Preserved

So how can soft tissue material, such as preening oil, persist in fossils for millions and millions of years?

In Dinosaur Blood and the Age of the Earth, I point out that paleontologists believe that soft-tissue preservation reflects a race between two competing processes: decomposition and mineral entombment. If mineral entombment wins, then whatever soft tissue that has avoided decomposition remains behind—for millions and millions of years. Once encased in mineral deposits, soft-tissue materials become isolated and protected from the environment, arresting the decomposition processes that would otherwise destroy them.

Anything that slows down the rate of decomposition will help soft-tissue materials to hang around long enough for mineral entombment to take place. One factor contributing to soft-tissue survival is the structural durability of the molecules that make up the soft tissues. In most instances, the soft tissues that survive are made up of highly durable materials. Toward this end, some of the components of preening oil (such as long chain alkanes) are chemically inert, making them resistant to chemical decomposition.

Though usually destructive, in some instances chemical reactivity can contribute to soft-tissue survival. This reactivity likely contributed to the survival of the preening oil. The team of paleontologists believes that the alkene components of the preening oils reacted to form high-molecular-weight polymers that, in turn, became resistant to chemical decomposition.

While not subject to chemical decomposition, long chain hydrocarbons would serve as an ideal food source for microbes in the environment. This process would work against preservation. But, microbial decomposition of preening oil is unlikely, because some of the components of the uropygial gland secretions possess antimicrobial activities.

Also, the shale that harbored the fossil bird is oxygen-depleted. The absence of oxygen in this geological setting most likely contributed to soft-tissue survival, preventing oxidative decomposition of the preening oil.

In other words, there are several collective mechanisms in play that would stave off the decomposition of the original preening oil, though it does look as if the original material did become chemically altered. The bottom line: There is no reason to think that soft-tissue materials derived from the original preening oil in the uropygial glands could not persist for 48 million years or longer in the fossil record.

At first glance, the soft-tissue argument for a young earth seems so compelling. Yet, when carefully evaluated (“examined”), it simply doesn’t hold up.

Becoming Bereans

As Christians, we should expect that there will be scientific discoveries that affirm our faith by revealing God’s fingerprints in nature and by supporting the creation accounts found in Scripture. Key biblical passages (such as Psalm 19 and Romans 1:20) teach this much. Yet, we must also recognize that as human beings interpreting nature (through science) and interpreting Scripture can be complex undertakings. As such, we can make mistakes. We are fallen creatures, we have limited knowledge, insight, and understanding, and we have preconceived notions . . . all of which influence our interpretations. And, it is for these reasons that we must all operate like the Bereans. We should respond to scientific arguments for the Christian faith with eagerness, but before we use them, we must rigorously evaluate them to ensure their validity and, if valid, to understand the arguments’ limitations. Sincere, well-meaning Christians can be wrong and can unintentionally mislead other Christians. But, when that happens it is our fault, not theirs, if we are mislead because we have failed to take the “noble,” Berean-like approach and do our homework.

Resources to Dig Deeper

Endnotes

  1. Shane O’Reilly et al., “Preservation of Uropygial Gland Lipids in a 48-Million-Year-Old Bird,” Proceedings of the Royal Society B 284 (October 18, 2017): doi:10.1098/rspb.2017.1050.
Reprinted with permission by the author
Original article at:
https://www.reasons.org/explore/blogs/the-cells-design/read/the-cells-design/2017/12/20/does-the-recovery-of-oils-from-a-fossilized-bird-evince-a-young-earth

Brain Synchronization Study Evinces the Image of God

brainsynchronization study

BY FAZALE RANA – DECEMBER 13, 2017

As I sit down at my computer to compose this post, the new Justice League movie has just hit the theaters. Even though it has received mixed reviews, I can’t wait to see this latest superhero flick. With several superheroes fighting side-by-side, it begs the question: “Who is the most powerful superhero in the DC universe?”

I’m not sure how you would respond, but in my opinion, it’s not Superman or Wonder Woman. Instead, it’s a superhero that didn’t appear in the Justice League movie (but he is a longtime member of the Justice League in the comic books): the Martian Manhunter.

Originally from Mars, J’onn J’onzz possesses superhuman strength and endurance, just like Superman. He can fly and shoot energy beams out of his eyes. But, he also has shapeshifting abilities and is a powerful telepath. It would be fun to see Superman and the Martian Manhunter tangle. My money would be on J’onn J’onzz because of his powerful telepathic abilities. As a telepath, he can read minds, control people’s thoughts and memories, create realistic illusions, and link minds together.

brain-synchronization-study

Image credit: Fazale Rana

Even though it is fun (and somewhat silly) to daydream about superhuman strength and telepathic abilities, recent work by Spanish neuroscientists from the Basque Center on Cognition, Brain, and Language indicates that mere mortals do indeed have an unusual ability that seems a bit like telepathy. When we engage in conversations with one another—even with strangers—the electrical activities of our brains synchronize.1 In part, this newfound ability may provide the neurological basis for the theory of mind and our capacity to form complex, hierarchical social relationships, properties uniquely displayed by human beings. In other words, this discovery provides more reasons to think that human beings are exceptional in a way that aligns with the biblical concept of the image of God.

Brain Synchronization

Most brain activity studies focus on individual subjects and their responses to single stimuli. For example, single-person studies have shown that oscillations in electrical activity in the brain couple with speech rhythms when the test subject is either listening or speaking. The Spanish neuroscientists wanted to go one step further. They wanted to learn what happens to brain activities when two people engage one another in a conversation.

To find out, they assembled 15 dyads (14 men and 16 women) consisting of strangers who were 20–30 years in age. They asked the members of each dyad to exchange opinions on sports, movies, music, and travel. While the strangers conversed, the researchers monitored electrical activities in the brains using EEG technology. As expected, they detected coupling of brain electrical activities with the speech rhythms in both speakers and listeners. But, to their surprise, they also detected pure brain entrainment in the electrical activities of the test subject, independent of the physical properties of the sound waves associated with speaking and listening. To put it another way, the brain activities of the two people in the conversation became synchronized, establishing a deep connection between their minds.

Brain Synchronization and the Image of God

The notion that human beings differ in degree, not kind, from other creatures has been a mainstay concept in anthropology and primatology for over 150 years. And it has been the primary reason why so many people have abandoned the belief that human beings bear God’s image. Yet, this stalwart view in anthropology is losing its mooring, with the concept of human exceptionalism taking its place. A growing minority of anthropologists and primatologists now believe that human beings really are exceptional. They contend that human beings do, indeed, differ in kind, not merely degree, from other creatures, including Neanderthals. Ironically, the scientists who argue for this updated perspective have developed evidence for human exceptionalism in their attempts to understand how the human mind evolved. But, instead of buttressing human evolution, these new insights marshal support for the biblical conception of humanity.

Anthropologists identify at least four interrelated qualities that make us exceptional: (1) symbolism, (2) open-ended generative capacity, (3) theory of mind, and (4) our capacity to form complex social networks.

As human beings, we effortlessly represent the world with discrete symbols. We denote abstract concepts with symbols. And our ability to represent the world symbolically has interesting consequences when coupled with our abilities to combine and recombine those symbols in a countless number of ways to create alternate possibilities. Our capacity for symbolism manifests in the form of language, art, music, and even body ornamentation. And we desire to communicate the scenarios we construct in our minds with other human beings.

But there is more to our interactions with other human beings than a desire to communicate. We want to link our minds together. And we can do this because we possess a theory of mind. In other words, we recognize that other people have minds just like ours, allowing us to understand what others are thinking and feeling. We also have the brain capacity to organize people we meet and know into hierarchical categories, allowing us to form and engage in complex social networks.

In effect, these qualities could be viewed as scientific descriptors of the image of God.

It is noteworthy that all four of these qualities are on full display in the Spanish neuroscientists’ study. The capacity to offer opinions on a wide range of topics and to communicate our ideas with language reflects our symbolism and our open-ended generative capacity. I find it intriguing that the oscillations of our brain’s electrical activity couples with the rhythmic patterns created by speech—suggesting our brains are hard-wired to support our desire to communicate with one another symbolically. I also find it intriguing that our brains become coupled at an even deeper level when we converse, consistent with our theory of mind and our capacity to enter into complex social relationships.

Even though many people in the scientific community promote a view of humanity that denigrates the image of God, common-day experience continually supports the notion that we are unique and exceptional as human beings. But, for me, I find it even more gratifying to learn that scientific investigations into our cognitive and behavioral capacities continue to affirm human exceptionalism and, with it, the image of God. Indeed, we are the crown of creation.

Resources to Dig Deeper

Endnotes

  1. Alejandro Pérez et al., “Brain-to-Brain Entrainment: EEG Interbrain Synchronization While Speaking and Listening,” Scientific Reports 7 (June 23, 2017): 4190, doi:10.1038/s41598-017-04464-4.
Reprinted with permission by the author
Original article at:
https://www.reasons.org/explore/blogs/the-cells-design/read/the-cells-design/2017/12/13/brain-synchronization-study-evinces-the-image-of-god

Molecular Scale Robotics Build Case for Design

molecularscalerobotics

BY FAZALE RANA – DECEMBER 6, 2017

Sometimes bigger is better, and other times, not so much—particularly for scientists working in the field of nanotechnology.

Scientists and engineers working in this area are obsessed with miniaturization. And because of this obsession, they have developed techniques to manipulate matter at the molecular scale. Thanks to these advances, they can now produce novel materials (that could never be produced with macro-scale methods) with a host of applications. They also use these techniques to fabricate molecular-level devices—nanometer-sized machines—made up of complex arrangements of atoms and molecules. They hope that these machines will perform sophisticated tasks, giving researchers full control of the molecular domain.

Recently, scientists from the University of Manchester in the UK achieved a milestone in nanotechnology when they designed the first-ever molecular robot that can be deployed to build molecules in the same way that robotic arms on assembly lines manufacture automobiles.1 These molecular robots can be used to improve the efficiency of chemical reactions and make it possible for organic chemists to design synthetic routes that, up to this point, were inconceivable.

Undoubtedly, this advance will pave the way for more cost-effective, greener chemical reactions at the bench and plant scales. It will also grant organic chemists greater control over chemical reactions, paving the way for the synthesis of new types of compounds including drugs and other pharmaceutical agents.

As exciting as these prospects are, perhaps the greater significance of this research lies in the intriguing theological implications. For example, comparison of the molecular robots to the biomolecular machines in the cell—machines that carry out similar assembly-line operations—highlights the elegant designs of biochemical systems, evincing a Creator’s handiwork. This research is theologically provocative in another way. It demonstrates human exceptionalism and, by doing so, supports the biblical claim that human beings are made in the image of God.

Molecular Robotics

University of Manchester chemists built molecular robots that consist of about 150 atoms of carbon, nitrogen, oxygen, and hydrogen. Though these robots consist of a relatively small number of atoms, the arrangement of these atoms makes the molecular robots structurally complex.

The robots’ architecture is organized around a molecular-scale platform. Located in the middle of the platform is a molecular arm that extends upward and then bends at a 90-degree angle. This molecular prosthesis binds molecules at the end of the arm and then can be made to swivel between the two ends of the platform as researchers add different chemicals to the reaction. The swiveling action brings the bound molecule in juxtaposition to the chemical groups at the tip ends of the platform. When reactants are added to the solution, these compounds will react with the bound molecule differently depending on the placement of the arm, whether it is oriented toward one end of the platform or the other. In this way, the bound molecule—call it A—can react through two cycles of arm placement to form one of four possible compounds—B, C, D, and E. In this scheme, unwanted side reactions are kept to a minimum, because the bound molecule is precisely positioned next to either of the two ends of the molecular platform. This specificity improves the reaction efficiency, while at the same time making it possible for chemists to generate compounds that would be impossible to synthesize without the specificity granted by the molecular robots.

Molecular Robots Make the Case for Design

Many researchers working in nanotechnology did not think that the University of Manchester scientists—or any scientists, for that matter—could design and build a molecular robot that could carry out high precision molecular assembly. In the abstract of their paper, the Manchester team writes, “It has been convincingly argued that molecular machines that manipulate individual atoms, or highly reactive clusters of atoms, with Ångstrom precision are unlikely to be realized.”2

Yet, the researchers were motivated to try to achieve this goal because molecular machines with this capacity exist inside the cell. They continue, “However, biological molecular machines routinely position rather less reactive substrates in order to direct chemical reaction sequences.”3 To put it another way, the Manchester chemists derived insight and inspiration from the biomolecular machines inside the cell to design and build their molecular robot.

As I have written about before, the use of designs in biochemistry to inspire advances in nanotechnology make possible a new design argument, one I call the converse watchmaker argument. Namely, if biological designs are the work of a Creator, these systems should be so well-designed that they can serve as engineering models and otherwise inspire the development of new technologies.

Comparison of the molecular robots designed by the University of Manchester team with a typical biomolecular machine found in the cell illustrates this point. The newly synthesized molecular robot consists of around 150 atoms, yet it took an enormous amount of ingenuity and effort to design and make. Still, this molecular machine is far less efficient than the biomolecular machines found in the cell. The cell’s biomolecular machines consist of thousands of atoms and are much more elegant and sophisticated than the man-made molecular robots. Considering these differences, is it reasonable to think that the biomolecular machines in the cell resulted from unguided, undirected, contingent processes when they are so much more advanced than the molecular robots built by scientists—some of them among the best chemists in the world?

The only reasonable explanation is that the biomolecular machines in the cell stem from the work of a mind—a divine mind with unlimited creative capacity.

Molecular Robots Make the Case for Human Exceptionalism

Though unimpressive when compared to the elegant biomolecular machines in the cell, molecular robots still stand as a noteworthy scientific accomplishment—one might even say they represent science at its very best. And this accomplishment stresses the fact that human beings are the only species that has ever existed that can create technologies as advanced as the molecular robots invented by the University of Manchester chemists. Our capacity to investigate and understand nature through science and then turn that insight into technologies is unique to human beings. No other creature that exists today or that has ever existed, possesses this capability.

Thomas Suddendorf puts it this way:

“We reflect on and argue about our present situation, our history, and our destiny. We envision wonderful harmonious worlds as easily as we do dreadful tyrannies. Our powers are used for good as they are for bad, and we incessantly debate which is which. Our minds have spawned civilizations and technologies that have changed the face of the Earth, while our closest living animal relatives sit unobtrusively in their remaining forests. There appears to be a tremendous gap between human and animal minds.”4

Anthropologists believe that symbolism accounts for the gap between humans and the great apes. As human beings, we effortlessly represent the world with discrete symbols. We denote abstract concepts with symbols. And our ability to represent the world symbolically has interesting consequences when coupled with our abilities to combine and recombine those symbols in a nearly infinite number of ways to create alternate possibilities.

Our capacity for symbolism manifests in the form of language, art, music, and even body ornamentation. And we desire to communicate the scenarios we construct in our minds with other human beings. In a sense, symbolism and our open-ended capacity to generate alternative hypotheses are scientific descriptors of the image of God.

There also appears to be a gap between human minds and the minds of the hominins, such as Neanderthals, who preceded us in the fossil record. It is true: claims abound about Neanderthals possessing the capacity for symbolism. Yet, as I discuss in Who Was Adamthose claims do not withstand scientific scrutiny. Recently, paleoanthropologist Ian Tattersall and linguist Noam Chomsky (along with other collaborators) argued that Neanderthals could not have possessed language and, hence, symbolism, because their crude “technology” remained stagnant for the duration of their time on Earth. Neanderthals—who first appear in the fossil record around 250,000 to 200,000 years ago and disappear around 40,000 years ago—existed on Earth longer than modern humans have. Yet, our technology has progressed exponentially, while Neanderthal technology remained largely static. According to Tattersall, Chomsky, and their coauthors:

“Our species was born in a technologically archaic context, and significantly, the tempo of change only began picking up after the point at which symbolic objects appeared. Evidently, a new potential for symbolic thought was born with our anatomically distinctive species, but it was only expressed after a necessary cultural stimulus had exerted itself. This stimulus was most plausibly the appearance of language. . . . Then, within a remarkably short space of time, art was invented, cities were born, and people had reached the moon.”5

In effect, these researchers echo Suddendorf’s point. The gap between human beings and the great apes and hominins becomes most apparent when we consider the remarkable technological advances we have made during our tenure as a species. And this mind-boggling growth in technology points to our exceptionalism as a species, affirming the biblical view that, as human beings, we uniquely bear God’s image.

Resources to Dig Deeper

Endnotes

  1. Salma Kassem et al., “Stereodivergent Synthesis with a Programmable Molecular Machine,” Nature 549 (September 21, 2017): 374–8, doi:10.1038/nature23677.
  2. Kassem et al., “Stereodivergent Synthesis,” 374.
  3. Kassem et al., “Stereodivergent Synthesis,” 374.
  4. Thomas Suddendorf, The Gap: The Science of What Separates Us from Other Animals (New York: Basic Books, 2013), 2.
  5. Johan J. Bolhuis et al., “How Could Language Have Evolved?” PLoS Biology 12 (August 26, 2014): e1001934, doi:10.1371/journal.pbio.1001934.
Reprinted with permission by the author
Original article at:
https://www.reasons.org/explore/blogs/the-cells-design/read/the-cells-design/2017/12/06/molecular-scale-robotics-build-case-for-design