Can Intelligent Design Be Part of the Construct of Science?

canintelligentdesignbepart

BY FAZALE RANA – JUNE 27, 2017

“If this result stands up to scrutiny, it does indeed change everything we thought we knew about the earliest human occupation of the Americas.”1

This was the response of Christopher Stringer—a highly-regarded paleoanthropologist at the Natural History Museum in London—to the recent scientific claim that Neanderthals made their way to the Americas 100,000 years before the first modern humans.2

At this point, many anthropologists have expressed skepticism about this claim, because it requires them to abandon long-held ideas about the way the Americas were populated by modern humans. As Stringer cautions, “Many of us will want to see supporting evidence of this ancient occupation from other sites before we abandon the conventional model.”3

Yet, the archaeologists making the claim have amassed an impressive cache of evidence that points to Neanderthal occupation of North America.

As Stringer points out, this work has radical implications for anthropology. But, in my view, the importance of the work extends beyond questions relating to human migrations around the world. It demonstrates that intelligent design/creation models have a legitimate place in science.

The Case for Neanderthal Occupation of North America

In the early 1990s, road construction crews working near San Diego, CA, uncovered the remains of a single mastodon. Though the site was excavated from 1992 to 1993, scientists were unable to date the remains. Both radiocarbon and luminescence dating techniques failed.

Recently, researchers turned failure into success, age-dating the site to be about 130,000 years old, using uranium-series disequilibrium methods. This result shocked them because analysis at the site indicated that the mastodon remainswere deliberately processed by hominids, most likely Neanderthals.

The researchers discovered that the mastodon bones displayed spiral fracture patterns that looked as if a creature, such as a Neanderthal, struck the bone with a rock—most likely to extract nutrient-rich marrow from the bones. The team also found rocks (called cobble) with the mastodon bones that bear markings consistent with having been used to strike bones and other rocks.

To confirm this scenario, the archaeologists took elephant and cow bones and broke them open with a hammerstone. In doing so, they produced the same type of spiral fracture patterns in the bones and the same type of markings on the hammerstone as those found at the archaeological site. The researchers also ruled out other possible explanations, such as wild animals creating the fracture patterns on the bones while scavenging the mastodon carcass.

Despite this compelling evidence, some anthropologists remain skeptical that Neanderthals—or any other hominid—modified the mastodon remains. Why? Not only does this claim fly in the face of the conventional explanation for the populating of the Americas by humans, but the sophistication of the tool kit does not match that produced by Neanderthals 130,000 years ago based on archaeological sites in Europe and Asia.

So, did Neanderthals make their way to the Americas 100,000 years before modern humans? An interesting debate will most certainly ensue in the years to come.

But, this work does make one thing clear: intelligent design/creation is a legitimate part of the construct of science.

A Common Skeptical Response to the Case for a Creator

Based on my experience, when confronted with scientific evidence for a Creator, skeptics will often summarily dismiss the argument by asserting that intelligent design/creation isn’t science and, therefore, it is not legitimate to draw the conclusion that a Creator exists from scientific advances.

Undergirding this objection is the conviction that science is the best, and perhaps the only, way to discover truth. By dismissing the evidence for God’s existence—insisting that it is nonscientific—they hope to undermine the argument, thereby sidestepping the case for a Creator.

There are several ways to respond to this objection. One way is to highlight the fact that intelligent design is part of the construct of science. This response is not motivated by a desire to “reform” science, but by a desire to move the scientific evidence into a category that forces skeptics to interact with it properly.

The Case for a Creator’s Role in the Origin of Life

It is interesting to me that the line of reasoning the archaeologists use to establish the presence of Neanderthals in North America equates to the line of reasoning I use to make the case that the origin of life reflects the product of a Creator’s handiwork, as presented in my three books: The Cell’s DesignOrigins of Life, and Creating Life in the Lab. There are three facets to this line of reasoning.

The Appearance of Design

The archaeologists argued that: (1) the arrangement of the bones and the cobble and (2) the markings on the cobble and the fracture patterns on the bones appear to result from the intentional activity of a hominid. To put it another way, the archaeological site shows the appearance of design.

In The Cell’s Design I argue that the analogies between biochemical systems and human designs evince the work of a Mind, serving to revitalize Paley’s Watchmaker argument for God’s existence. In other words, biochemical systems display the appearance of design.

Failure to Explain the Evidence through Natural Processes

The archaeologists explored and rejected alternative explanations—such as scavenging by wild animals—for the arrangement, fracture patterns, and markings of the bones and stones.

In Origins of Life, Hugh Ross (my coauthor) and I explore and demonstrate the deficiency of natural process, mechanistic explanations (such as replicator-first, metabolism-first, and membrane-first scenarios) for the origin of life and, hence, biological systems.

Reproduction of the Design Patterns

The archaeologists confirmed—by striking elephant and cow bones with a rock—that the markings on the cobble and the fracture patterns on the bone were made by a hominid. That is, through experimental work in the laboratory, they demonstrated that the design features were, indeed, produced by intelligent agency.

In Creating Life in the Lab, I describe how work in synthetic biology and prebiotic chemistry empirically demonstrate the necessary role intelligent agency plays in transforming chemicals into living cells. In other words, when scientists go into the lab and create protocells, they are demonstrating that the design of biochemical systems is intelligent design.

So, is it legitimate for skeptics to reject the scientific case for a Creator, by dismissing it as non-scientific?

Work in archaeology illustrates that intelligent design is an integral part of science, and it highlights the fact that the same scientific reasoning used to interpret the mastodon remains discovered near San Diego, likewise, undergirds the case for a Creator.

Resources

Endnotes

  1. Colin Barras, “First Americans May Have Been Neanderthals 130,000 Years Ago,” New Scientist, April 26, 2017, https://www.newscientist.com/article/2129042-first-americans-may-have-been-neanderthals-130000-years-ago/.
  2. Steven R. Holen et al., “A 130,000-Year-Old Archaeological Site in Southern California, USA,” Nature 544 (April 27, 2017): 479–83, doi:10.1038/nature22065.
  3. Barras, “First Americans.”

How Are Sea Slugs a Failed Prediction of the Evolutionary Paradigm?

howareseaslugsafailedprediction
BY FAZALE RANA – JULY 18, 2017

Test them all; hold on to what is good.

–1 Thessalonians 5:21

What is your definition of success?

The answer to this question most likely depends on the person you ask. People view success differently.

However, subjectivity is not the case when it comes to scientific theories. Success in science is based on a singular criterion: how well does the theory perform at predicting future scientific outcomes?

Scientific predictions arise as the logical entailments of the theory at hand. In turn, scientists use these predictions to assess the theory’s validity. If experimental results and observations fulfill the theory’s predictions, then scientists consider it sound. If observations and results don’t match the predictions, then scientists are forced to revise and even discard, the theory under evaluation. In short, successful scientific theories have explanatory and predictive power.

It is for this reason many biologists view the theory of evolution as a valid paradigm for interpreting the origin, history, and design of life. And it is for this reason many biologists regard the theory of evolution as biology’s grand unifying theory.

However, the evolutionary paradigm has yet to adequately explain key events in life’s history, such as (1) the origin of life, (2) the origin of body plans, (3) the origin of sexual reproduction, (4) the trigger for the sociocultural big bang and human exceptionalism, and (5) the origin of consciousness. The evolutionary paradigm also suffers from failed predictions, as recent work by a team of neuroscientists from Georgia State University attests.1

Swimming Sea Slugs

The Georgia State University researchers characterized the neural circuits involved in the swimming behavior of a group of sea slugs called the nudibranchs. These creatures serve as an ideal model system to study neural circuits because relatively large neurons make up their neural systems. The sea slugs’ neural circuits are simple and straightforward to map. On top of that, the sea slugs’ neural circuits regulate simple behaviors. These properties make it easy to characterize and, then, manipulate the neural circuitry of these creatures.

Biologists have identified about 2,000 species of nudibranchs. Of this number, about 50 swim with a characteristic left-right motion.

The Georgia State scientists investigated the neural mechanism associated with the left-right swimming behavior of two sea slug species: the giant nudibranch and the hooded nudibranch. From an evolutionary perspective, these two sea slugs share an evolutionary ancestor. In fact, all 50 left-right swimming sea slugs belong to the same branch of the evolutionary tree. (In technical terms, they are monophyletic.)

Predictions of the Evolutionary Model

Given that the left-right swimming nudibranchs are monophyletic, the evolutionary model predicts that the morphology, genetics, and behavior originated in the common ancestor of this group. And, given that the swimming behavior of this group is shared among all members (homologous), the expectation is that the neurons and neural circuitry that control this behavior should also be shared among all members.

The Georgia State scientists say, “. . . Behavioral morphology is often assumed to involve similarity in underlying neuronal mechanisms. . . . Behaviors that are homologous and similar in form would naturally be assumed to be produced by similar neural mechanisms.”2

Sea Slug Neural Circuitry

Consistent with the predictions of the evolutionary paradigm, the researchers discovered that the neurons of the giant and hooded nudibranchs were homologous. But, to their surprise, they discovered that the underlying neural mechanisms that controlled the swimming behavior of the two sea slugs were distinct.

In fact, using a technique called dynamic clamping, the Georgia State scientists could modify the neural circuitry of one sea slug to be the same as the other, all the while inducing the same swimming behavior.

Masking the Failure of the Evolutionary Paradigm

The unexpected discovery of distinct neural circuitry in the giant and hooded nudibranchs stands as a failed prediction of the evolutionary paradigm. So how do the Georgia State scientists respond to this discovery?

First, they point out that their findings support the notion of neural plasticity, with the same neurons supporting multiple neural circuits and varying neural circuits producing the same behavior. But, neural plasticity doesn’t fully account for this finding. If the two sea slugs weren’t part of the same branch on the evolutionary tree, one could argue that the difference in neural circuits represents an example of convergence.

The researchers suggest that perhaps the divergence of the neural circuitry from the neural mechanism displayed by the shared ancestor of the nudibranch is due to a phenomenon they dub neural drift. This doesn’t seem plausible given the importance of the swimming behavior for sea slug survival. Altering the neural circuitry would alter this behavior, compromising the sea slug’s fitness.

In fact, there is no independent evidence whatsoever for neural drift. It is a made-up, ad hocphenomenon that creates a diversion, masking the fact that the results from this study represent a failed prediction of the evolutionary paradigm.

While this failed prediction is not sufficient to overthrow the evolutionary paradigm, it does justify skepticism about the capacity of evolutionary theory—as currently conceived—to fully explain life’s design and diversity.

Resources

Endnotes

  1. Akira Sakurai and Paul S. Katz, “Artificial Synaptic Rewiring Demonstrates that Distinct Neural Circuit Configuration Underlie Homologous Behaviors,” Current Biology 27 (June 19, 2017): 1–14, doi:10.1016/j.cub.2017.05.016.
  2. Ibid.

Why Did God Create the Thai Liver Fluke?

whydidgodcreatethethairiver
BY FAZALE RANA – JULY 11, 2017

The Thai liver fluke causes quite a bit of human misery. This parasite infects fish living in the rivers of Southeast Asia, which, in turn, infects people who eat the fish.

Raw and fermented fish make up a big part of the diet of people in Southeast Asia. For example, in Thailand, a popular culinary item is called sour fish. This “delicacy” is prepared by mixing raw fish with garlic, salt, seasoning, and rice. After rolling the mixture into a ball, it is placed in a plastic bag and left to ferment in the hot sun for several days.

The fermentation process isn’t sufficient to kill the cysts of the Thai liver fluke embedded in the muscles of the infected fish. So, when people eat sour fish (or raw fish), they risk ingesting the parasite.

The Thai Liver Fluke Life Cycle

After ingestion, the cysts open in the digestive track of the human host, releasing the fluke. This parasite travels through the bile duct, making its way into the liver, where it takes up residence.

Once in the liver, the fluke lays eggs that are carried into the host’s digestive track by bile secreted by the liver. In turn, the eggs are released into the environment with human excrement. After being ingested by snails, the eggs hatch, producing larvae that escape from the snail. The free-living larvae infect fish, forming cysts in their skin, fins, and muscle.

Image: Life cycle of Opisthorchis viverrini. Image source: Wikipedia

The Thai liver fluke is a master of disguise, evading the immune system of the human host and living for decades in the liver. Unless the infestation is extreme, people infected with the fluke are completely unaware that they harbor this parasite.

Estimates indicate that 10% of the Thai population is infected with the Thai liver fluke. But in the villages of northern Thailand, where the consumption of raw and fermented fish is higher than in other areas of the country, 45% of the people carry the parasite.

The Thai Liver Fluke and Cancer

The Thai liver fluke can live for several decades in the host’s liver without much consequence. But eventually, the burden of the infection catches up with the human host, leading to an aggressive and deadly form of liver cancer that claims about 26,000 Thai lives each year. Once the cancer is detected, most patients die within a year.

Biomedical researchers think the liver cancer is triggered by the Thai liver fluke, which munches on the host’s liver. Interestingly, the fluke’s saliva contains a protein (called granulin-like protein) that stimulates cell growth and division. These processes help the liver to repair itself after being damaged by the fluke. In effect, the parasite eats part of the liver, supercharges the liver to repair itself, and then eats the new tissue, repeating the cycle for decades. The repeated wounding and repairing of the liver tissue accompanied by rapid cell division eventually leads to the onset of cancer.

The Thai Liver Fluke and God’s Goodness

The problems caused by the Thai liver fluke are not limited to the biomedical arena. This parasite causes theological issues, as well. Why would a good God create the Thai liver fluke? Questions like this one fall under the problem of evil.

Philosophers and theologians recognize two kinds of evil: moral and natural.Moral evil stems from human action (or inaction in some cases). Natural evil proceeds from nature itself—earthquakes, tornadoes, floods, diseases, and the like.

Natural evil seems to present a greater theological challenge than moral evil does. Skeptics could agree that God can be excused for the free-will actions of human beings who violate his standard of goodness, but they reason that natural disasters and disease don’t result from human activity. Therefore, this type of “evil” must be attributed solely to God.

Are Some Forms of Natural Evil Actually Moral Evil?

As I have previously argued, many times natural evil is moral evil in disguise. (See the Resources section below.) In other words, the suffering humans experience stems from human moral failing and poor judgment, not the actual natural phenomenon.

This most certainly seems to be the case when it comes to the Thai liver fluke. Liver cancer caused by parasite infestations would plummet if people stopped eating raw fish and developed better public sanitation systems and practices.

So, is it God’s fault that humans become infected with the Thai liver fluke? Or is it because the people of northern Thailand suffer from poverty and a lack of sanitation—ultimately, conditions caused by human moral failing? Is it God’s fault that people of Southeast Asia develop liver cancer from fluke infestations, when they eat raw and fermented fish instead of properly cooking the meat, knowing the adverse health effects?

Parasites Play a Critical Role in Ecological Systems

Still, the question remains: Why would God create parasites at all?

As it turns out, parasites play an indispensable role in ecosystem health.1 Though these creatures make minor contributions to the biomass of ecosystems, they have a significant effect on several ecosystem parameters, including biodiversity. In fact, some ecologists believe that an ecosystem becomes more robust and functions better as parasite diversity increases.

Considering this insight, a rationale exists as to why God would create the Thai liver fluke to be a member of the ecosystems of the rivers in Southeast Asia. This parasite infects any carnivore (dogs, cats, rats, and pigs) that eats fish from these rivers, not just humans. Undoubtedly infecting these carnivores influences a variety of ecosystem processes, such as species competition, and energy flow through the ecosystem. The harm this parasite causes humans is an unintended consequence of imprudent human activities—not the inherent design of nature.

Parasites and God’s Providence

Remarkably, recent work by scientists from the Australian Institute of Tropical Health and Medicine (AITHM) indicates that the suffering caused by the Thai liver fluke may fulfill a higher purpose—a greater good.

These researchers believe that the Thai liver fluke may hold the key to effectively treat slow- and non-healing wounds caused by diabetes.2

High blood glucose levels associated with diabetes compromise the circulatory and immune systems. This compromised condition inhibits wound repair due to restricted blood flow to the site of the injury. It also makes the wound much more prone to infection.

The AITHM researchers realized that the granulin-like protein produced by the Thai liver fluke could be used to promote healing of chronic wounds because it promotes rapid cell proliferation in the liver. If incorporated into a cream, this protein could be topically applied to the wounds, stimulating wound repair. This treatment would dramatically reduce the cost of treating chronic wounds and significantly improve the treatment outcomes.

Ironically, the properties of the granulin-like protein that make this biomolecule so insidious are exactly the properties that make it useful to treat diabetics’ wounds. To put it another way, the Thai liver fluke is beneficial to humanity.

The idea that God designed nature to be useful for humanity is a facet of divine providence. In Christian theology, this idea refers to God’s continual role in: (1) preserving his creation; (2) ensuring that everything happens; and (3) guiding the universe. The concept of divine providence also posits that when God created the world he built into the creation everything humans (and other living organisms) would need. Accordingly, every good thing that people possess has been provided and preserved by God, either directly or indirectly.

On this basis, as counterintuitive as this may initially seem, it could be argued that as part of his providence, God created the Thai liver fluke for humanity’s use and benefit.

And we know that in all things God works for the good of those who love him, who have been called according to his purpose.

–Romans 8:28

Resources

Endnotes

  1. Peter J. Hudson, Andrew P. Dobson, and Kevin D. Lafferty, “Is a Healthy Ecosystem One that Is Rich in Parasites?” Trends in Ecology and Evolution 21 (July 2006): 381–85, doi:10.1016/j.tree.2006.04.007.
  2. Paramjit S. Bansal et al., “Development of a Potent Wound Healing Agent Based on the Liver Fluke Granulin Structural Fold,” Journal of Medicinal Chemistry 60 (April 20, 2017): 4258–66, doi:10.1021/acs.jmedchem.7b00047.