What Does the Discovery of Earth’s Oldest Fossils Mean for Evolutionary Models?



Communication can be a complex undertaking. Often, people don’t say what they really mean. And if they do, their meaning is often veiled in what they say. That’s why it’s important to learn how to read between the lines. Understanding the real meaning when something isn’t explicitly stated usually requires experience and some insider’s knowledge.

Thanks to my expertise in biochemistry and origin-of-life research and 20 years of experience as a Christian apologist, I can usually read between the lines when scientists respond to discoveries that challenge the evolutionary paradigm, such as the recently reported discovery of Earth’s oldest fossils. Because of their fear that intelligent design proponents and creationists will make use of these types of discoveries to advance the case for a Creator, scientists can be adept at masking their concern when they discuss the implications of these discoveries. But if you know how to read between the lines, their consternation is as plain as day.

Earth’s Oldest Fossils

An international team made up of scientists from the United Kingdom, United States, Canada, and Australia recently reported on the discovery of microfossils from a geological formation in the northern part of Quebec, Canada.1 Formed from ancient hydrothermal vents, this iron-rich geological system dates somewhere between 3.77 and 4.3 billion years in age.

The putative microfossils consist of microscopic hematite filaments and tubes, like those found in modern hydrothermal vents. Today, iron-oxidizing microbes produce hematite filaments and tubes when sheaths of extracellular materials become coated by iron oxyhydroxide. Added evidence for the biogenicity of these microfossils comes from carbonate and apatite associated with the hematite structures. These compounds can also be produced as by-products of the metabolic activity of microorganisms. The research team also discovered graphite inclusions enriched in carbon-12, a geochemical signature of life. Finally, the Raman spectrum of the carbonaceous deposits display features that also point to the biological origin of this material.

Matthew Dodd, one of the research team members, argues that “we can think of alternative explanations for each of these singular observations, but why all of these features occur together can really only be explained by one thing, which is a biological interpretation.”2

The discovery of these microfossils comes on the heels of the discovery of stromatolites in newly exposed rock outcroppings in Greenland, dating at 3.7 billion years.3 Both recent discoveries corroborate earlier work that yielded several different geochemical markers for biological activity. In short, an impressive weight of evidence points to the early appearance of complex and diverse microbial life on Earth.

Skepticism about Bioauthenticity

Despite this impressive collection of evidence, several scientists have expressed skepticism about the bioauthenticity of the fossils. Journalist Sarah Kaplan explains why: “Findings like these are subject to intense scrutiny because they have potentially far-reaching implications for the study of early organisms on Earth and other planets.”4

As I have discussed previously when the discovery of 3.7-billion-year-old stromatolite fossils were unearthed in Greenland, one of the implications of the early appearance of metabolically complex and diverse microbial life on Earth is that it calls into question evolutionary explanations for the origin of life. These discoveries indicate that life appeared suddenly on Earth, in a geological instant. Yet traditionally, origin-of-life researchers maintained that life’s origin via chemical evolution would have required hundreds of millions of years, perhaps even a billion years.

This concern can be read between the lines in the objections raised by scientists responding to this discovery.

Some argue that the research team hasn’t amassed enough evidence to convince them of the biogenicity of the fossils, pointing out that extraordinary claims require extraordinary evidence. But the claim that life appeared early in Earth’s history is only extraordinary within the evolutionary paradigm. To view these microfossils as extraordinary highlights the trouble these fossil finds cause for an evolutionary approach to the origin-of-life question.

Others argue that iron-oxidizing microbes are too complex to have appeared this early in Earth’s history. Some assert that the rock layers containing the fossils are much younger than 3.77 billion years, raising concerns about the dating methods used to determine the age of the rocks harboring the microfossils. Again, both complaints reveal concerns about the impact that this fossil find has on the evolutionary explanation for life’s beginning. The hope is that by forcing the fossils to appear much later in Earth’s history, scientists can explain the metabolic complexity of the organisms that produced the hematite deposits by giving evolutionary processes more time. Yet there is no reason to dispute the dates for the rock formations in northern Canada, and the case for the biogenicity of the fossils is strong.

Some dismiss the bioauthenticity of the microfossils because it would require life to originate under hostile conditions, caused by the late heavy bombardment. These hostile conditions would have frustrated the origin-of-life process, potentially sterilizing Earth, making it difficult to imagine how life could have emerged, let alone diversified, at 3.77 billion years ago—at least from an evolutionary vantage point. If these fossils aren’t authentic, then scientists don’t have to confront the counterintuitive fact that life appeared under hostile conditions.

It seems to me that these scientists are dangerously close to evaluating the validity of the 3.77-billion-year-old microfossils based on how well they fit into the evolutionary paradigm, instead of evaluating evolutionary explanations for the origin of life based on the fossil evidence—a complete reversal of the way that the scientific method is supposed to work.

Nevertheless, a quick read between the lines reveals just how awkwardly this fossil find fits within the evolutionary paradigm.

Implications for Creation Models

Though the discovery of 3.77-billion-year-old microfossils confounds evolutionary origin-of-life models, it affirms RTB’s origin-of-life model. As described in Origins of Life, two key predictions of this model include (1) life appearing on Earth soon after the planet’s formation and (2) first life possessing intrinsic complexity. And these predictions are satisfied by this latest advance.

The writing is on the wall: the case for a Creator’s role in the origin of life is becoming more and more evident.



  1. Matthew S. Dodd et al., Evidence for Early Life in Earth’s Oldest Hydrothermal Vent Precipitates,”Nature 543 (March 2017): 60–64, doi:10.1038/nature21377.
  2. Sarah Kaplan, “Newfound 3.77-Billion-Year-Old Fossils Could Be Earliest Evidence of Life on Earth,” Washington Post, March 1, 2017, https://www.washingtonpost.com/news/speaking-of-science/wp/2017/03/01/newfound-3-77-billion-year-old-fossils-could-be-earliest-evidence-of-life-on-earth.
  3. Allen P. Nutman et al., “Rapid Emergence of Life Shown by Discovery of 3,700-Million-Year-Old Microbial Structures,” Nature 537 (September 2016): 535–38, doi:10.1038/nature19355.
  4. Kaplan, “Newfound 3.77-Billion-Year-Old Fossils.”
Reprinted with permission by the author
Original article at:

Latest Insights into Obesity Fatten the Case for Human Design



As a biochemist, I have come up with a radical new diet plan: Eat less and exercise more. Yet, recent work by a research team led by Herman Pontzer at Hunter College exposed the flaws in my newfangled diet before I could even try it out. As it so happens, an emerging body of data indicates that exercise contributes very little to weight loss.

This surprising, counterintuitive finding has important implications for medical practitioners trying to combat a worldwide obesity epidemic. It also highlights the elegant design of the human body and supports the growing case for human exceptionalism.

The Obesity Epidemic

Some of the latest statistics indicate that worldwide, 1 in 3 people are overweight and 1 in 10 suffer from obesity. This problem has serious consequences because obesity plays a part in the etiology of type 2 diabetes, cardiovascular disease, and certain forms of cancer.

Of course, the cause of obesity is straightforward: People consume more calories than they need. One common-sense solution is to have people exercise more. Presumably the obesity epidemic is linked to a sedentary lifestyle. Throughout most of human history, our forebearers lived physically demanding lives. In contrast, people today engage in limited physical activity. Presumably, this inactivity lowers daily energy expenditure, leading to excessive weight gain, as caloric intake exceeds caloric outtake. Ready access to energy-dense foods only serves to exacerbate this caloric imbalance.

But as it turns out, exercise appears to have little to no bearing on weight loss, defying conventional wisdom. While exercise has many health benefits, weight loss doesn’t appear to be one of them. Why? Because, based on the latest research, increasing our physical activity doesn’t lead to a greater caloric expenditure. As a corollary, the only way to lose weight is to restrict caloric intake.

Constrained Energy Expenditure

Over the course of the last few years, researchers at Hunter College have sought to understand what, if any, aspect of the Western lifestyle contributes to obesity. In the process, they have learned that the sedentary lifestyle in the West is not the problem. They discovered that when people transition from an inactive lifestyle to one characterized by moderate activity, a small increase in energy expenditure occurs. But, beyond that point, energy expenditure plateaus. Additional activity doesn’t translate into increased energy expenditure; instead total energy outlay appears to be constrained.

For example, in 2012 the research team from Hunter College published the results of a study in which they examined the energy expenditure of the Hadza people, indigenous hunter-gatherers who live in the woodland and savanna of northern Tanzania. Anthropologists think that their way of living closely resembles the lifestyle of the first modern humans. As expected, the investigators determined that the Hadza are much more active than people who live Western lifestyles. Despite that difference, the average daily energy expenditure of the Hadza was no different than people from the Western world (once corrected for age, body size, and body composition).1

In a broader study, the Hunter College scientists found the same trend when examining average daily energy expenditure for a sample of 332 people from Africa and North America. The sample included 25- to 45-year-old men and women representing people with a variety of lifestyles. After correcting for age, body size, and composition, average daily energy expenditure appeared to be constant, regardless of the amount of daily activity.2

The Hunter College researchers speculate that as physical activity increases, our bodies conserve calories by reducing (1) our basal metabolic rate, (2) our repair processes, and (3) our growth rate. Additionally, women also conserve energy by reducing estrogen production and (for women who are nursing) decreasing lactation. The researchers also speculate that men and women may reduce energy expenditure by altering our posturing behaviors.

Constrained Energy Expenditure and the Case for Human Design

In many ways, constrained energy expenditure functions as an ingenious design to ensure human survival. For most of human history, our ancestors lived as hunter-gatherers—a highly active, physically demanding way of life. Yet when hunting and foraging for food, day-to-day success is not guaranteed. Humans could never have endured as a species if our daily energy expenditures didn’t plateau. When caloric intake is low (because of food scarcity), reducing activity level is not an option for hunter-gatherers because reduced activity makes it even less likely that they will find enough food to provide the minimal daily caloric intake. When food is scarce, the only way to endure is to double down foraging efforts. But increased foraging wouldn’t be possible if caloric expenditures increased linearly with activity. Constraining caloric output by slowing down basal metabolic rates and other processes allows hunter-gatherers to maintain high activity levels even when food isn’t plentiful.

As a creationist, I see constrained energy expenditure as an ingenious biological design befitting a Creator who made human beings to be fearfully and wonderfully made.

Constrained Energy Expenditure and the Case for Human Exceptionalism

When it comes to constraining daily energy expenditure, humans aren’t unique. It appears as if all primates limit their daily energy outlay. For example, the daily energy expenditures of primates in the wild is no different than the caloric output of primates living out their lives in a zoo or in a laboratory setting.

But what does make us unique is the magnitude of our daily energy expenditure. Humans require about 600 more calories per day than chimpanzees and nearly 1,000 more calories than orangutans.3 The primary reason for this difference is our large brain size. Maintenance of our large brains requires an energy outlay not demanded of other primates. Compared to other primates, we have accelerated metabolic processes.

But our large brain size (and our advanced cognitive abilities, capacities for symbolism, and theory of mind that go along with it) allow us to thrive in the face of this additional energy demand. The first anatomically modern humans were adept at shaping their diets to consist of calorie-rich foods. Cooking their food also allowed them to extract more calories and other nutrients from the food they collected. They also shared food with one another. These practices reflect our unique nature as human beings and arise from our symbolism and capacity for theory of mind—properties that reflect the image of God.

The unexpected insight into the relationship between physical activity and energy expenditure points to insights about human beings that are initially unexpected for those of us who view humans as the product of God’s handiwork. Constrained energy expenditure doesn’t make much sense if we think about it in the context of a Western lifestyle. But when we consider it in light of the way human beings have lived for much of human history, it makes perfect sense. And the difference in our average energy expenditure compared to other primates highlights our unique and exceptional nature, adding to the weight (pun intended) of evidence for human exceptionalism.

Returning to my diet plan: I guess it doesn’t take a biochemist to know what do to lose weight—just eat less.



  1. Herman Pontzer et al., “Hunter-Gatherer Energetics and Human Obesity,” PLoS ONE 7 (July 2012): id. e40503, doi:10.1371/journal.pone.0040503.
  2. Herman Pontzer et al., “Constrained Total Energy Expenditure and Metabolic Adaptation to Physical Activity in Adult Humans,” Current Biology 26 (February 2016): 410–17, doi:10.1016/j.cub.2015.12.046.
  3. Herman Pontzer et al., “Metabolic Acceleration and the Evolution of Human Brain Size and Life History,” Nature 533 (May 2016): 390–92, doi:10.1038/nature17654.
Reprinted with permission by the author
Original article at:

Protein-Binding Sites ENCODEd into the Design of the Human Genome



At last year’s AMP Conference, I delivered a talk titled: “How the Greatest Challenges Can Become the Greatest Opportunities for the Gospel.” I illustrated this point by describing three scientific concepts related to the origin of humanity that 20 years ago stood as insurmountable challenges to the traditional biblical view of human origins. But, thanks to scientific advances, these concepts have been replaced with new insights that turn these challenges into evidence for the Christian faith.

The Challenge of Junk DNA

One of the challenges I discussed centered on junk DNA—nonfunctional DNA littering the genomes of most organisms. Presumably, these nonfunctional DNA sequences arose through random biochemical, chemical, and physical events, with functional DNA converted into useless junk, in some instances. In fact, when the scientific community declared the human genome sequence completed in 2003, estimates at that time indicated that around 95 percent of the human genome consist of junk sequences.

Since I have been involved in apologetics (around 20 years), skeptics (and believers) have regarded the high percentages of junk DNA in genomes as a significant problem for intelligent design and creation models. Why would an all-powerful, all-knowing, and all-good God create organisms with so much junk in their genomes? The shared junk DNA sequences found among the genomes of humans and the great apes compounds this challenge. For many, these shared sequences serve as compelling evidence for common ancestry among humans and the other primates. Why would a Creator introduce nonfunctional DNA sequences into corresponding locations in genomes of humans and the great apes?

But what if the junk DNA sequences are functional? It would undermine the case for common descent, because these shared sequences could reasonably be interpreted as evidence for common design.

The ENCODE Project

In recent years, numerous discoveries indicate that virtually every class of junk DNA displays function, providing mounting support for a common-design interpretation of junk DNA. (For a summary, see the expanded and updated edition of Who Was Adam?) Perhaps the most significant advance toward that end came in the fall of 2012 with the publication of phase II results of the ENCODE project—a program carried out by a consortium of scientists with the goal of identifying the functional DNA sequence elements in the human genome.

To the surprise of many, the ENCODE project reported that around 80 percent of the human genome displays function, with the expectation that this percentage should increase with phase III of the project. Many of the newly recognized functional elements play a central role in regulating gene expression. Others serve critical roles in establishing and maintaining the three-dimensional hierarchical structure of chromosomes.

If valid, the ENCODE results would force a radical revision of the way scientists view the human genome. Instead of a wasteland littered with junk DNA sequences, the human genome (and the genome of other organisms) would have to be viewed as replete with functional elements, pointing to a system far more complex and sophisticated than ever imagined—befitting a Creator’s handiwork. (See the articles listed in the Resources section below for more details.)

ENCODE Skeptics

Within hours of the publication of the phase II results, evolutionary biologists condemned the ENCODE project, citing a number of technical issues with the way the study was designed and the way the results were interpreted. (For a response to these complaints go herehere, and here.)

These technical complaints continue today, igniting the junk DNA war between evolutionary biologists and genomics scientists. Though the concerns expressed by evolutionary biologists are technical, some scientists have suggested the real motivation behind the criticisms of the ENCODE project are philosophical—even theological—in nature. For example, molecular biologists John Mattick and Marcel Dinger write:

There may also be another factor motivating the Graur et al. and related articles (van Bakel et al. 2010; Scanlan 2012), which is suggested by the sources and selection of quotations used at the beginning of the article, as well as in the use of the phrase ‘evolution-free gospel’ in its title (Graur et al. 2013): the argument of a largely non-functional genome is invoked by some evolutionary theorists in the debate against the proposition of intelligent design of life on earth, particularly with respect to the origin of humanity. In essence, the argument posits that the presence of non-protein-coding or so-called ‘junk DNA’ that comprises >90% of the human genome is evidence for the accumulation of evolutionary debris by blind Darwinian evolution, and argues against intelligent design, as an intelligent designer would presumably not fill the human genetic instruction set with meaningless information (Dawkins 1986; Collins2006). This argument is threatened in the face of growing functional indices of noncoding regions of the genome, with the latter reciprocally used in support of the notion of intelligent design and to challenge the conception that natural selection accounts for the existence of complex organisms (Behe 2003; Wells 2011).1

Is DNA-Binding Activity Functional?

Even though there may be nonscientific reasons for the complaints leveled against the ENCODE project, it is important to address the technical concerns. One relates to how biochemical function was determined by the ENCODE project. Critics argued that ENCODE scientists conflated biochemical activity with function. As a case in point, three of the assays employed by the ENCODE consortium measure binding of proteins to the genome, with the assumption that binding of transcription factors and histones to DNA indicated a functional role for the target sequences. On the other hand, ENCODE skeptics argue that most of the measured protein binding to the genome was random.

Most DNA-binding proteins recognize and bind to short stretches of DNA (4 to 10 base pairs in length) comprised of highly specific nucleotide sequences. But given the massive size of the human genome (3.2 billion genetic letters), nonfunctional binding sites will randomly occur throughout the genome, for statistical reasons alone. To illustrate: Many DNA-binding proteins target roughly between 1 and 100 sites in the genome. Yet, the genome potentially harbors between 1 million and 1 billion binding sites. The hundreds of sites that are slight variants of the target sequence will have a strong affinity to the DNA-binding proteins, with thousands more having weaker affinities. Hence, the ENCODE critics maintain that much of the protein binding measured by the ENCODE team was random and nonfunctional. To put it differently, much of the protein binding measured in the ENCODE assays merely is a consequence of random biochemical activity.

Nonfunctional Protein Binding to DNA Is Rare

This challenge does have some merit. But, this criticism may not be valid. In an earlier response to this challenge, I acknowledged that some protein binding in genomes will be random and nonfunctional. Yet, based on my intuition as a biochemist, I argued that random binding of proteins throughout the genome would be disruptive to DNA metabolism, and, from an evolutionary perspective would have been eliminated by natural selection. (From an intelligent design/creation model vantage point, it is reasonable to expect that a Creator would design genomes with minimal nonfunctional protein-binding sites.)

As it happens, new work by researchers from NYU affirms my assessment.2 These investigators demonstrated that protein binding in genomes is not random but highly specific. As a corollary, the human genome (and genomes of other organisms) contains very few nonfunctional protein-binding sites.

To reach this conclusion, these researchers looked for nonfunctional protein-binding sites in the genomes of 75 organisms, representative of nearly every major biological group, and assessed the strength of their interaction with DNA-binding proteins. The researchers began their project by measuring the binding affinity for a sample of regulatory proteins (from humans, mice, fruit flies, and yeast) with every possible 8 base pair sequence combination (32,896). Based on the binding affinity data, the NYU scientists discovered that nonfunctional binding sites with a high affinity for DNA binding proteins occurred infrequently in genomes. To use scientific jargon to describe their findings: The researchers discovered a negative correlation between protein-binding affinity and the frequency of nonfunctional binding sites in genomes. Using statistical methods, they demonstrated that this pattern holds for all 75 genomes in their study.

They attempted to account for the frequency of nonfunctional binding sequences in genomes by modeling the evolutionary process, assuming neutral evolution in which random mutations accrue over time free from the influence of natural selection. They discovered that this modeling failed to account for the sequence distributions they observed in the genomes, concluding that natural selection must have weeded high affinity nonfunctional binding sites in genomes.

These results make sense. The NYU scientists point out that protein mis-binding would be catastrophic for two reasons: (1) it would interfere with several key processes, such as transcription, gene regulation, replication, and DNA repair (the interference effect); and (2) it would create inefficiencies by rendering DNA-binding proteins unavailable to bind at functional sites (the titration effect). Though these problems may be insignificant for a given DNA-binding protein, the cumulative effects would be devastating because there are 100 to 1,000 DNA-binding proteins per genome with 10 to 10,000 copies of each protein.

The Human Genome Is ENCODEd for Design

Though the NYU researchers conducted their work from an evolutionary perspective, their results also make sense from an intelligent design/creation model vantage point. If genome sequences are truly the product of a Creator’s handiwork, then it is reasonable to think that the sequences comprising genomes would be optimized—in this case, to minimize protein mis-binding. Though evolutionary biologists maintain that natural selection shaped genomes for optimal protein binding, as a creationist, it is my contention that the genomes were shaped by an intelligent Agent—a Creator.

These results also have important implications for how we interpret the results of the ENCODE project. Given that the NYU researchers discovered that high affinity nonfunctional binding sites rarely occur in genomes (and provided a rationale for why that is the case), it is difficult for critics of the ENCODE project to argue that transcription factor and histone binding assays were measuring mostly random binding. Considering this recent work, it makes most sense to interpret the protein-binding activity in the human genome as functionally significant, bolstering the original conclusion of the ENCODE project—namely, that most of the human genome consists of functional DNA sequence elements. It goes without saying: If the original conclusion of the ENCODE project stands, the best evidence for the evolutionary paradigm unravels.

Our understanding of genomes is in its infancy. Forced by their commitment to the evolutionary paradigm, many biologists see genomes as the cobbled-together product of an unguided evolutionary history. But as this recent study attests, the more we learn about the structure and function of genomes, the more elegant and sophisticated they appear to be. And the more reasons we have to believe that genomes are the handiwork of our Creator.



  1. John S. Mattick and Marcel E. Dinger, “The Extent of Functionality in the Human Genome,” The HUGO Journal 7 (July 2013): doi:10.1186/1877-6566-7-2.
  2. Long Qian and Edo Kussell, “Genome-Wide Motif Statistics Are Shaped by DNA Binding Proteins over Evolutionary Time Scales,” Physical Review X 6 (October–December 2016): id. 041009, doi:10.1103/PhysRevX.6.041009.
Reprinted with permission by the author
Original article at:

Hagfish Slime Expands the Case for a Creator



The designs found in biological systems never cease to amaze me. Even something as gross and seemingly insignificant as hagfish slime displays remarkable properties, befitting the handiwork of a Creator. In fact, the design of hagfish slime is so ingenious, it is serving as the source of inspiration for researchers from the US Navy in their quest to develop new types of military technology.

What Are Hagfish?

Hagfish are ancient creatures that first appeared on Earth around 520 million years ago, with representative specimens recovered in the Cambrian fossil assemblages. These eel-like creatures are about 20 inches in length with loose fitting skin that varies in color from pink to blue-gray, depending on the species.

The hagfish are jawless but have a mineralized encasement around their skull (cranium). With eyespots instead of true eyes, these creatures have no vision. Hagfish are bottom-dwellers. To explore their environment, they make use of whisker-like structures. As scavengers, hagfish consume dead and dying creatures by burrowing into their bodies and ingesting the remains from the inside out. Remarkably, hagfish absorb nutrients through their skin and gills, in addition to feeding with their mouths. In fact, researchers estimate that close to half their nutrient intake comes through absorption.

Hagfish Slime

When disturbed or attacked by predators, hagfish secrete a slime from about 100 glands that line the flanks of their bodies. (This behavior explains why hagfish are sometimes called slime eels.) Produced by epithelial and gland thread cells, the slime rapidly expands to 10,000 times its original volume. A single hagfish can generate around 5.5 gallons of slime each time it’s disturbed. Once secreted, the slime coats the gills of attacking fish, suffocating the predator. With the predator distracted, the hagfish performs this defensive maneuver that allows it to escape, while scrapping the slime off its body to prevent self-suffocation.

Two different types of proteins comprise hagfish slime. One of the components, mucin, is a large protein found widely throughout nature, serving as the primary component of mucus. Secreted by epithelial cells, mucin interacts with water molecules, restricting their movement, contributing to the slime’s viscosity.1

Additionally, hagfish slime consists of long, thread-like proteins. These protein threads are 12 nanometers in diameter and 15 centimeters long! (That is one big molecule.) These dimensions equate to a rope that is 1 centimeter in diameter and 1.5 kilometers in length. These protein fibers are incredibly strong, equivalent to a string that is 100 times thinner than a strand of human hair, but 10 times stronger than a piece of nylon.

Inside the gland thread cells, these protein fibers are carefully packaged like a skein of yarn, held together by other proteins that serve as a type of molecular glue.2 When the secreted hagfish slime contacts seawater, the glue proteins dissolve, leading to an explosive unraveling of the protein skeins, without any of the fibers becoming tangled. The protein threads contribute to the slime’s viscoelastic properties and provide the mechanism for the rapid swelling of the slime.

Hagfish Slime Inspires Military Technologies

The unusual and ingenious properties of the slime and the slime’s thread proteins have inspired researchers from the US Navy to explore their use in military technology. For example, the remarkable durability of the protein fibers (reminiscent of Kevlar) suggests an application for them in bulletproof vests. The properties of the hagfish slime could also be used as a flame retardant and a shark repellent for Navy divers.

Other commercial labs are exploring applications that include food packaging, bungee cords, and bandages. In fact, some have gone as far as to dub the thread proteins as the ultimate biodegradable biofiber.

Biomimetics and the Case for a Creator

In recent years, engineers have routinely and systematically benefited by insights from biology to address engineering problems and to inspire new technologies by either directly copying (or mimicking) designs from biology, or using insights from biological designs to guide the engineering enterprise.

From my perspective, the use of biological designs to guide engineering efforts fits awkwardly within the evolutionary paradigm. Why? Because evolutionary biologists view biological systems as the products of an unguided, historically contingent process that co-opts preexisting systems to cobble together new ones. Evolutionary mechanisms can optimize these systems, but they are still kludges.

Given the unguided nature of evolutionary mechanisms, does it make sense for engineers to rely on biological systems to solve problems and inspire new technologies? Conversely, biomimetics and bioinspiration find a natural home in a creation model approach to biology. Using designs in nature to inspire engineering makes sense only if these designs arose from an intelligent Mind—even if they are as disgusting as the slime secreted by a bottom-dwelling scavenger.



  1. Lukas Böni et al., “Hagfish Slime and Mucin Flow Properties and Their Implications for Defense,” Scientific Reports 6 (July 2016): id. 30371, doi:10.1038/srep30371.
  2. Timothy Winegard et al., “Coiling and Maturation of a High-Performance Fibre in Hagfish Slime Gland Thread Cells,” Nature Communications 5 (April 2014): id. 3534, doi:10.1038/ncomms4534; Mark A. Bernards Jr. et al., “Spontaneous Unraveling of Hagfish Slime Thread Skeins Is Mediated by a Seawater-Soluble Protein Adhesive,” Journal of Experimental Biology 217 (April 2014): 1263–68, doi:10.1242/jeb.096909.
Reprinted with permission by the author
Original article at:

The Remarkable Scientific Accuracy of Psalm 139



For you created my inmost being; you knit me together in my mother’s womb. I praise you because I am fearfully and wonderfully made; your works are wonderful, I know that full well.

– Psalm 139:13–14

Psalm 139 has been on my mind quite a bit lately. Maybe it’s because I have recently written a couple of articles about the incredible design of human pregnancy—design that highlights just how fearfully and wonderfully human beings are made.

Posting these articles to my Facebook page prompted one of my Facebook friends, Eric, to ask a thought-provoking question:

“Psalm 139:13 says God ‘knit’ us in our mother’s womb. This sounds a lot to me like DNA replication. Is this reading science into the text?”

Given the importance of DNA replication to embryological development and the specific features of the replication process, I understand why Eric would want to make that comparison. While I think that there are passages in Scripture that anticipate (even predict) scientific discoveries, I don’t see Psalm 139 referring to DNA replication. (By the way, I appreciate Eric’s caution about reading science into the text.)

Having said that, I do think that the description of God knitting each one of us together in our mother’s womb is an apt analogy for the process of embryological development at the cellular level, because both knitting and development are predicated on forethought and rely on a special type of information—qualities that reflect the activity of an Intelligent Agent.

An Overview of Embryo Growth and Development

Embryological development begins the moment the egg cell (oocyte) becomes fertilized by a sperm cell, yielding a zygote. In turn, the zygote undergoes several rounds of cell division (referred to as cleavage) to produce a berry-like structure, called a morula. All of this happens by the third or fourth day of pregnancy.

Over the next couple of days, the morula undergoes changes that characterize the process of embryogenesis. In addition to undergoing growth and division, cells in the morula begin to migrate relative to one another to form a structure with a hollow sphere called a blastula. Within the sphere is a clump of cells called the inner cell mass.

scientific-accuracy-of-psalm-139-1The next stage in embryogenesis sees the inner cell mass transform into a stack of three cellular layers (called germ layers) through cell growth, division, and migration. At this stage, the embryo is referred to as the gastrula.

The specific cell layers of the gastrula are labeled: (1) the ectoderm, (2) the mesoderm, and (3) the endoderm. Each of these cell layers is fated to develop into different organ systems in the body. The ectoderm forms the nervous system and the epidermis of the skin. The mesoderm forms muscles, the skeletal system, blood and blood vessels, and the dermis of the skin. The endoderm forms the linings of the digestive and respiratory systems, and organs that comprise the digestive system, such as the liver and pancreas.

After gastrulation, the next stage involves organ formation. Organogenesis begins in each of the individual cell layers and involves the careful orchestration of several processes, including cell growth, cell division, cell-to-cell communication, cell migration, differentiation of cells into specialized types, secretion of extracellular materials, and even cell death (which is necessary to sculpt the tissues and organs).

These cellular processes are directed by the complex interplay between gene networks within the cells (with genes turning on and off) and chemical gradients produced from materials secreted by the cells. Some scientists think that bioelectric fields generated by the cells of the developing embryo also direct embryogenesis.1 The patterns formed by the chemical gradients and bioelectric fields direct the movements, differentiation, and behavior of the embryonic cells. Still, the scientific community is unclear what ultimately determines the chemical gradient and bioelectric field patterns. To put it another way, while scientists are beginning to understand the role that chemical gradients and bioelectric fields play in development, they have no idea where the instructions ultimately come from that direct individual cells in the developing embryo to contribute to and, in turn, respond to the chemical gradients and bioelectric fields that guide embryonic development.

Perhaps the problem has to do with the fact that the scientific community views embryogenesis from a strictly materialistic/naturalistic framework. But what if embryo development were to be examined from a creation model vantage point?

Embryological Development and the Case for Intelligent Design

Remarkably, the instructions for embryogenesis appear to be instantiated in the cells that make up the developing embryo. From a creation model perspective, these instructions must come from a Mind, because instructions are a form of information (specifically, algorithmic information) and common experience teaches that algorithms emanate from a Mind. Toward that end, origin-of-life researchers Paul Davies and Sara Walker recently acknowledged that currently there is no evolutionary explanation for algorithmic information instantiated in living matter.2

Another reason to think that embryological development stems from a Creator’s involvement relates to the foresight required to formulate the instructions so that they lead to the desired outcome for embryogenesis. Evolutionary processes do not have foresight. Foresight also reflects the work of a Mind. If these instructions are flawed for even a single cell during the early stages of development, the consequences would be disastrous, with the offspring turning into a “developmental monster,” compromised in its capacity to survive and reproduce. To put it differently, it is hard to envision how evolutionary processes could generate the algorithmic information needed for embryogenesis through trial and error, without the benefit of foresight.

To help make this point clear, consider the analogy between embryogenesis and the routine performed by cheerleaders during a competition.3 Throughout the performance, each cheerleader has a specific set of movements and actions she will perform. Before the performance, her coach instructs her in exactly what to do, when to do it, and where to do it on the mat. Her individual movements and actions are different from every other team member, but when performed in conjunction with her teammates (who have their own set of instructions), the outcome can be dazzling. All this is possible, because the coach choreographed the routine ahead of the performance, with an eye toward how the routine would unfold at different stages of the performance. That is, the routine was intelligently designed with the benefit of the coach’s foresight and that design was implemented through the instructions given to each girl. If not for the coach’s foresight and instructions, chaos would ensue during the performance as each girl did whatever seemed right to her at the time.

In like manner, during embryogenesis, each cell harbors a set of instructions that tell it: (1) what chemicals and how much of these materials to secrete to establish the gradients needed to guide development, (2) when to reproduce, (3) when and where to migrate, (4) when to differentiate, (5) when and what materials to secrete to form the extracellular matrix, and (6) when to die. In a sense, the cells are like cheerleaders. And the process of embryological development is akin to the choreography of a cheer routine. The only difference: the choreography of embryological development is much more complex, elaborate, and sophisticated.

As with cheerleading, someone must give the cells instructions ahead of time with the end goal of embryological development in view. And I see that “someone” as the Creator.

Knit Together in the Womb

I also find “knitting” an apt metaphor for embryological development. My mother is an avid knitter. And whenever I watch her knit, I can’t help but recognize the similarities to a cheer routine. Knitting consists of a choreography, of sorts. Someone who knits a sweater has a final product in mind before she even picks up needles and chooses the yarn. Making use of a set of instructions—algorithmic information—that tells her which yarn to use and which knitting strokes to employ, she performs a series of actions that will eventually lead to the final product, though what that product is may not be evident at the instant those actions are performed, at least to the uninitiated.

In this context, it is intriguing that David, the author of Psalm 139, would describe embryological development as a knitting process. David writes,

“Your eyes saw my unformed body; all the days ordained for me were written in your book before one of them came to be.”

– Psalm 139:16

In light of what we have learned about embryological development, I find the scientific prescience of Psalm 139 remarkable.



  1. Michael Levin, “Bioelectric Mechanisms in Regeneration: Unique Aspects and Future Perspectives,” Seminars in Cell and Developmental Biology 20 (July 2009): 543–56, doi:10.1016/j.semcdb.2009.04.013.
  2. Sara Imari Walker and Paul C. W. Davies, “The Algorithmic Origins of Life,” Journal of the Royal Society Interface 10 (February 2013): doi:10.1098/rsif.2012.0869.
  3. One of my daughters was a competitive cheerleader. Before she started, if you would have asked me, “Are cheerleaders athletes?” I would have laughed. But after spending several years around cheerleaders, I am truly impressed with their athleticism. In short, cheerleaders are amazing athletes.
Reprinted with permission by the author
Original article at: